Insights into the potential aggregation liabilities of the b12 Fab fragment via elevated temperature molecular dynamics.

Protein Eng Des Sel

Biotherapeutics Pharmaceutical Research and Development, Pfizer Global Research and Development, Chesterfield, MO 63017, USA.

Published: March 2013

Aggregation is a common hurdle faced during the development of antibody therapeutics. In this study, we explore the potential aggregation liabilities of the Fab (fragment antigen-binding) from a human IgG1κ antibody via multiple elevated temperature molecular dynamic simulations, analogous to accelerated stability studies performed during formulation development. Deformation and solvent exposure changes in response to thermal stress were monitored for individual structural domains (V(H), V(L), C(H)1 and C(L)), their interfaces (V(H):V(L) and C(H)1:C(L)), edge beta-strands and sequence-predicted aggregation-prone regions (APRs). During simulations, domain interfaces deformed prior to the unfolding of individual domains. However, interfacial beta-strands retained their secondary structure and remained solvent protected longer than all other strands or loops. Thus, APRs located in interfacial beta-strands are effectively blocked from self-association. Structural deformations were also observed in complementarity-determining regions, edge beta-strands and adjoining framework beta-strands, which increased their solvent-accessible surface area and exposed APRs in these regions. From the analysis of these structural changes, two potential aggregation liabilities were identified in the V(H) domain of this Fab. Insights gained from this investigation should be useful in devising a rational structure-based strategy for the design and selection of antibody candidates with high potency and improved developability.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzs099DOI Listing

Publication Analysis

Top Keywords

potential aggregation
12
aggregation liabilities
12
fab fragment
8
elevated temperature
8
temperature molecular
8
edge beta-strands
8
interfacial beta-strands
8
beta-strands
5
insights potential
4
aggregation
4

Similar Publications

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Transcatheter Aspiration of Tricuspid Vegetation.

JACC Case Rep

December 2024

Jesselson Integrated Heart Center, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

Objective: This study sought to present the endovascular approach of transcatheter aspiration using the FlowTriever (Inari Medical) aspiration system for high surgical risk patients with right-sided infective endocarditis.

Key Steps: General anesthesia and transesophageal echocardiogram guidance; ultrasonography-guided femoral vein access, preclosure sutures, and insertion of a 24-F sheath; insertion of straight 24-F aspiration cannula over a stiff wire, parked in the superior vena cava; introduction of a 20-F curved cannula inside the 24-F cannula to create a telescopic assembly; accurate positioning using the right ventricle inflow/outflow projection in biplane mode; adjustment of the curved cannula radius by sliding the inner cannula in and out inside the mother cannula; manual aspiration of the vegetation; Postaspiration transesophageal echocardiogram assessment.

Potential Pitfalls: Avoid leaflet and annular injury and account for potential embolization.

View Article and Find Full Text PDF

Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold.

View Article and Find Full Text PDF

Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties.

Small

January 2025

Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.

Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative chronic disease with a severe social and economic impact in the societies, which still lacks an efficient therapy. Several pathophysiological events (β-amyloid [Aβ] deposits, τ-protein aggregation, loss of cholinergic activity, and oxidative stress) occurs in the progression of the disease. Therefore, the search for efficient multi-targeted agents for the treatment of Alzheimer's disease becomes indispensable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!