The enteropathogenic coronavirus transmissible gastroenteritis virus (TGEV) causes severe disease in young piglets. We have studied the protective effects of the probiotic Enterococcus faecium NCIMB 10415 (E. faecium), which is approved as a feed additive in the European Union, against TGEV infection. E. faecium was added to swine testicle (ST) cells before, concomitantly with, or after TGEV infection. Viability assays revealed that E. faecium led to a dose-dependent rescue of viability of TGEV-infected cells reaching nearly to complete protection. Virus yields of the E. faecium-treated cultures were reduced by up to three log10 units. Western blot analysis of purified TGEV revealed that the levels of all viral structural proteins were reduced after E. faecium treatment. Using transmission electron microscopy, we observed attachment of TGEV particles to the surface of E. faecium which might be a means to trap virus and to prevent infection. Increased production of nitric oxide in the cells treated with E. faecium and elevated expression of interleukin 6 and 8 pointed to stimulated cellular defense as a mechanism to fight TGEV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086644 | PMC |
http://dx.doi.org/10.1007/s00705-012-1543-0 | DOI Listing |
Front Vet Sci
December 2024
College of Animal Science and Technology, Guangxi University, Nanning, China.
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Background: The mucus layer provides the first defense that keeps the epithelium free from microorganisms. However, the effect of the small intestinal mucus layer on pathogen invasion is still poorly understood, especially for swine enteric coronavirus. To better understand virus‒mucus layer‒intestinal epithelium interactions, here, we developed a porcine intestinal organoid mucus‒monolayer model under air‒liquid interface (ALI) conditions.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Introduction: , , , and are the primary pathogens responsible for gastrointestinal diseases in pigs, posing a significant threat to the health and productivity of pig production systems. Pathogen detection is a crucial tool for monitoring and managing these infections.
Methods: We designed primers and probes targeting the gene of , the 23S gene of , the gene of , and the gene of .
J Virol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China.
Swine enteric coronaviruses pose a significant challenge to the global pig industry, inflicting severe diarrhea and high mortality rates among piglets, and resulting in substantial economic losses. In our clinical practice, we observed that the addition of potassium molybdate (PM) to the feed could dramatically reduce diarrhea and diarrhea-related mortality in piglets. However, the underlying mechanisms remain elusive and merit further investigation.
View Article and Find Full Text PDFBMC Vet Res
November 2024
National Veterinary Research Institute, Al. Partyzantów 57, Puławy, 24-100, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!