Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub-shot noise detection process uncertainty of the number of detected photons and beyond that show a monotonic response up to ≈ 6 · 10(6) photons in a single light pulse. This mode of operation, which heats the sensor far beyond its transition edge into the normal conductive regime, offers a technique for connecting single-photon-counting measurements to radiant-power measurements at picowatt levels. Connecting these two usually incompatible operating regimes in a single detector offers significant potential for directly tying photon counting measurements to conventional cryogenic radiometric standards. In addition, our measurements highlight the advantages of a photon-number state source over a coherent pulse source as a tool for characterizing such a detector.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.023798DOI Listing

Publication Analysis

Top Keywords

transition edge
12
edge sensors
8
extending single-photon
4
single-photon optimized
4
optimized superconducting
4
superconducting transition
4
sensors single-photon
4
single-photon counting
4
counting regime
4
regime typically
4

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Enhanced energy storage in antiferroelectrics via antipolar frustration.

Nature

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Dielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.

View Article and Find Full Text PDF

Optical metasurfaces offer significant advantages in enhancing the speed, efficiency, and miniaturization of imaging systems. However, most existing metasurfaces are limited to static functionalities and lack reconfigurability, which is a key feature for practical applications in dynamic environments. In this work, we demonstrate a reconfigurable optical metasurface capable of switching between two distinct imaging functions (edge detection and bright-field imaging) within the visible spectrum.

View Article and Find Full Text PDF

This paper presents the design and experimental verification of a terahertz (THz) spoof surface plasmon polariton (SSPP) waveguide using a coplanar stripline (CPS) with internal corrugations and is compared against an external corrugation configuration. Internal corrugations are selected to reduce the insertion loss by improving the mode conversion efficiency of the transition circuit. We examine this effect using simulation and then experimentally confirm that the SSPP mode was excited for two different corrugation depths, 55 µm, and 65 µm.

View Article and Find Full Text PDF

Highly deformable flapping membrane wings suppress the leading edge vortex in hover to perform better.

Proc Natl Acad Sci U S A

February 2025

École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.

Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!