A nanophotonic polarization-independent visible wavelength filter is presented, incorporating a symmetric metal-dielectric resonant structure on quartz substrate, where a sub-wavelength grating, made up of a two-dimensional array of Al square sheets, is integrated with a Si(3)N(4) slab waveguide via an oxide layer. Incident light is orthogonally diffracted by the symmetric grating towards two directions of the grating groove, and then resonantly coupled to both transverse electric and transverse magnetic guided modes associated with the underlying waveguide, irrespective of light polarization. Polarization independent bandpass filtering was thus achieved around specific wavelengths, determined by the grating pitch and the effective index of the waveguide. Three devices, operating in the blue, green and red spectral bands, were built through design and analysis drawing upon the finite-difference time-domain method. The devices, DEV I, II, and III, were constructed with grating pitches of 285, 355 and 395 nm, respectively, while the core was 100 nm thick. They were inspected to function as an efficient bandpass filter, centered at 460, 560 and 610 nm, with bandwidths of about 13, 14 and 17 nm, respectively; the peak transmission efficiencies were consistently over 85%. Furthermore, the transfer characteristics, insensitive to light polarization, were satisfactorily confirmed for normal incidence.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.023769DOI Listing

Publication Analysis

Top Keywords

polarization-independent visible
8
visible wavelength
8
wavelength filter
8
incorporating symmetric
8
symmetric metal-dielectric
8
metal-dielectric resonant
8
resonant structure
8
light polarization
8
grating
5
filter incorporating
4

Similar Publications

Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.

View Article and Find Full Text PDF

Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers.

Nat Commun

November 2024

Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.

Achieving achromaticity across the visible light spectrum is crucial for metalenses in imaging systems. Single-layer metalenses struggle with weak focusing power or small aperture sizes due to inadequate group delay control. Multilayer metalenses offer some improvement but come with increased design and fabrication complexity.

View Article and Find Full Text PDF

Decimeter-depth and polarization addressable color 3D meta-holography.

Nat Commun

September 2024

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.

Fueled by the rapid advancement of nanofabrication, metasurface has provided unprecedented opportunities for 3D holography. Large depth 3D meta-holography not only greatly increases information storage capacity, but also enables distinguishing of the relative spatial relationship of 3D objects, which has important applications in fields like optical information storage and medical diagnosis. Although the methods based on Fresnel diffraction theory can reconstruct the real depth information of 3D objects, the maximum depth is only 2 mm.

View Article and Find Full Text PDF

Polarization-Insensitive Lithium Niobate-on-Insulator Interferometer.

Micromachines (Basel)

July 2024

School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China.

The key components of a polarization-independent electro-optic (EO) interferometer, including the beam splitter, mode converter, and directional coupler, are designed based on a lithium niobate (LN) platform on an integrated insulator to ensure high extinction ratios. By elaborately designing the geometric structure of the multimode interference (MMI) coupler, beam splitting of equal proportions and directional coupling of higher-order modes are realized. The most prominent characteristic of the proposed interferometer is polarization insensitivity, which is realized by converting TM polarization into TE polarization using a mode converter, providing conditions for the study of light with different polarizations.

View Article and Find Full Text PDF

In this paper, a broadband solar absorber is constructed and simulated based on the finite difference time domain method (FDTD). The modeled structure of the absorber consists of cyclic stacking of five absorber cells with different periods on refractory metal W, where a single absorber cell is composed of a three-layer SiO-InAs-TiN square film. Due to the Fabry-Perot resonance and the surface plasmon resonance (SPR), an absorptivity greater than 90% within a bandwidth of 2599.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!