Orbital angular momentum (OAM) entanglement is investigated in the Bessel-Gaussian (BG) basis. Having a readily adjustable radial scale, BG modes provide an alternative basis for OAM entanglement over Laguerre-Gaussian modes. We show that the OAM bandwidth in terms of BG modes can be increased by selection of particular radial wavevectors and leads to a flattening of the spectrum, which allows for higher dimensionality in the entangled state. We demonstrate entanglement in terms of BG modes by performing a Bell-type experiment and showing a violation of the Clauser-Horne-Shimony-Holt inequality for the ℓ = ±1 subspace. In addition, we use quantum state tomography to indicate higher-dimensional entanglement in terms of BG modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.023589DOI Listing

Publication Analysis

Top Keywords

terms modes
12
oam entanglement
8
entanglement terms
8
modes
5
entangled bessel-gaussian
4
bessel-gaussian beams
4
beams orbital
4
orbital angular
4
angular momentum
4
momentum oam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!