We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.026755 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.
View Article and Find Full Text PDFNat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Monolayer transition metal dichalcogenides (TMDs) with strong exciton effects have enabled diverse light emitting devices, however, their Ångstrom thickness makes it challenging to efficiently manipulate exciton emission by themselves. Although their nanostructured multi-layer counterparts can effectively manipulate optical field at deep subwavelength thickness scale, these indirect band gap multi-layer TMDs are lack of strong luminescence, hindering their applications in light emitting devices. Here, the integration of monolayer TMDs is presented with nanostructured multi-layer TMDs, combining both strong exciton emission and optical manipulation in a single ultra-thin platform.
View Article and Find Full Text PDFJHEP Rep
January 2025
Hepatitis Viruses and Pathobiology of Chronic Liver Diseases - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon - Hepatology Institute of Lyon F - IHU EVEREST, University of Lyon 1, ISPB, France, CNRS UMR5286, Centre Léon, Lyon, France.
Background & Aims: Owing to unexplained interpatient variation and treatment failure in hepatocellular carcinoma (HCC), novel therapeutic approaches remain an urgent clinical need. Hepatic neurons, belonging to the autonomic nervous system (ANS), mediate liver/whole body crosstalk. Pathological innervation of the ANS has been identified in cancer, nurturing tumor stroma and conferring stronger carcinogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!