We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.026200DOI Listing

Publication Analysis

Top Keywords

taming flow
4
flow light
4
light active
4
active magneto-optical
4
magneto-optical impurities
4
impurities demonstrate
4
demonstrate interplay
4
interplay magneto-optical
4
magneto-optical layer
4
layer sandwiched
4

Similar Publications

Taming the Flow with Hyperbranched Polyamides as Melt Modifiers in Polyamide Composites.

Macromol Rapid Commun

January 2025

Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea.

Transport equipment manufacturers in the automotive and aerospace industries are focused on developing materials that enhance fuel efficiency and reduce carbon dioxide emissions. A significant approach is employing lightweight materials like aluminum, magnesium, and polymer-based composites. Polyamide-based composites, particularly nylon 66, as viable alternatives due to their excellent rigidity, chemical resistance, and thermal stability are investigated to address the limitations of traditional thermosetting resins, which are difficult to recycle and have lengthy molding processes that hinder mass production.

View Article and Find Full Text PDF

Background: Type I interferons (IFN-I) are potent alarm factors that initiate cancer cell elimination within tumors by the immune system. This critical immune response is often suppressed in aggressive tumors, thereby facilitating cancer immune escape and unfavorable patient outcome. The mechanisms underpinning IFN-I suppression in tumors are incompletely understood.

View Article and Find Full Text PDF

Taming Mass Gaps with Anti-de Sitter Space.

Phys Rev Lett

August 2024

Department of Theoretical Physics, CERN, 1211 Meyrin, Switzerland.

Anti-de Sitter space acts as an infrared cutoff for asymptotically free theories, allowing interpolation between a weakly coupled small-sized regime and a strongly coupled flat-space regime. We scrutinize the interpolation for theories in two dimensions from the perspective of boundary conformal theories. We show that the appearance of a singlet marginal operator destabilizes a gapless phase existing at a small size, triggering a boundary renormalization group flow to a gapped phase that smoothly connects to flat space.

View Article and Find Full Text PDF

Taming 3-Oxetanyllithium Using Continuous Flow Technology.

Org Lett

April 2024

FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy.

The oxetane ring has evolved as a useful bioisostere for dimethyl and carbonyl groups for the improvement of physiochemical properties of drug candidates. Herein, we report the generation and utilization of highly unstable 3-oxetanyllithium as a hitherto unexplored nucleophile leveraging flash technology. A range of different electrophiles are suitable reaction partners in this protocol, and we demonstrate the utility of this protocol in late-stage pharmaceutical analogue synthesis.

View Article and Find Full Text PDF

Neural circuits are composed of multiple regions, each with rich dynamics and engaging in communication with other regions. The combination of local, within-region dynamics and global, network-level dynamics is thought to provide computational flexibility. However, the nature of such multiregion dynamics and the underlying synaptic connectivity patterns remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!