We report on the highly efficient, resonantly diode-pumped Er:YAG-core, double-clad, all-crystalline eye-safe waveguide laser. A 500 × 500 μm Er(3+)(1%):YAG single-crystalline core with an ultra low numerical aperture (NA) of ~0.02 was surrounded by a 700 × 700 μm undoped single-crystalline YAG cladding. The entire Er:YAG/YAG core/clad structure was over-clad by transparent magnesium aluminum spinel (MgAl(2)O(4)) ceramic. The waveguide was continuously (CW) clad-pumped by a spectrally-narrowed, fiber-coupled InGaAsP/InP laser diode module at ~1532 nm. We achieved 25.4 W of output power at 1645 nm with a beam quality of M2 ~2.6. The achieved 56.6% slope efficiency with respect to the absorbed pump was derived by factoring out scattering loss of the pump light in the inner cladding. With a wavelength-selective cavity, the waveguide laser delivered ~8 W of output power at 1616.6 nm. To the best of our knowledge, it is the first reported laser experiment with a crystalline Er(3+):YAG-core and a truly double-clad crystalline waveguide structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.025554 | DOI Listing |
Nat Commun
January 2025
Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
Micromachines (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China.
To enhance the end-face coupling efficiency of lithium niobate on insulator (LNOI) chips, in conjunction with current device fabrication processes, a stepped spot size converter (SSC) based on a special outer envelope profile has been proposed and investigated. This stepped SSC can reduce the coupling loss between the LNOI waveguide and a normal single-mode optical fiber. First, the output waveguide of a mode converter was proposed and simulated, in which the mode field had the biggest overlapping integral factor with a single-mode fiber (MDF ≈ 9.
View Article and Find Full Text PDFWe report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.
View Article and Find Full Text PDFWe develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!