Aqueous suspensions of dendronized iron oxide nanoparticles (NPs) have been obtained after functionalization, with two types of dendrons, of NPs synthesized either by coprecipitation (leading to naked NPs in water) or by thermal decomposition (NPs in situ coated by oleic acid in an organic solvent). Different grafting strategies have been optimized depending on the NPs synthetic method. The size distribution, the colloidal stability in isoosmolar media, the surface complex nature as well as the preliminary biokinetic studies performed with optical imaging, and the contrast enhancement properties evaluated through in vitro and in vivo MRI experiments, have been compared as a function of the nature of both dendrons and NPs. All functionalized NPs displayed good colloidal stability in water, however the ones bearing a peripheral carboxylic acid function gave the best results in isoosmolar media. Whereas the grafting rates were similar, the nature of the surface complex depended on the NPs synthetic method. The in vitro contrast enhancement properties were better than commercial products, with a better performance of the NPs synthesized by coprecipitation. On the other hand, the NPs synthesized by thermal decomposition were more efficient in vivo. Furthermore, they both displayed good biodistribution with renal and hepatobiliary elimination pathways and no consistent RES uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt31788e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.
The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
North Caucasus Federal University, 355000 Stavropol, Russia. Electronic address:
Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!