Aging of semiconductor nanocrystals (NCs) is well-known to attenuate the spontaneous photoluminescence from the band edge excitonic state by introduction of nonradiative trap states formed at the NC surface. In order to explore charge carrier dynamics dictated by the surface of the NC, femtosecond pump/probe spectroscopic experiments are performed on freshly synthesized and aged CdTe NCs. These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X). Pump fluence dependence with excitonic state-resolved optical pumping enables directly populating the biexcitonic state (XX), which produces further accelerated electron trapping rates. This increase in electron trapping rate triggers coherent acoustic phonons by virtue of the ultrafast impulsive time scale of the surface trapping process. The observed trapping rates are discussed in terms of electron transfer theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp307668gDOI Listing

Publication Analysis

Top Keywords

electron trapping
16
semiconductor nanocrystals
8
excitonic state
8
aged cdte
8
cdte ncs
8
trapping rates
8
trapping
6
ultrafast electron
4
surface
4
trapping surface
4

Similar Publications

A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.

View Article and Find Full Text PDF

Cell Wall Microdomains Analysis in the Quadrifids of .

Int J Mol Sci

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.

Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.

View Article and Find Full Text PDF

A comprehensive DFT/TDDFT investigation into the influence of electron acceptors on the photophysical properties of ullazine-based D-π-A-π-A photosensitizers.

Sci Rep

January 2025

Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.

The type of electron acceptor group has a significant effect on the photovoltaic properties of solar cell sensitizers. In this study, on the basis of previous studies of the π1- and π2-linked groups of D-π1-A1-π2-A2-type sensitizers, the photoelectric properties of Ullazine-Based photosensitizing dyes were further optimized by adjusting the electron-absorbing groups at the A1 and A2 positions. DFT and TDDFT calculations revealed that substituting the A1 position with a BTD moiety led to a substantial increase in the light absorption capacity of the dye.

View Article and Find Full Text PDF

Bio-green synthesis of bismuth oxide nanoparticles using almond gum for enhanced photocatalytic degradation of water pollutants and biocompatibility.

Int J Biol Macromol

January 2025

Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia. Electronic address:

The discharge of dye-contaminated industrial wastewater is a significant source of water and soil pollution. The eco-friendly synthesis of multifunctional bismuth oxide nanoparticles (BiO-NPs) offers a promising approach for the removal of toxic contaminants. The incorporation of natural polymers in nanoparticle production has gained significant scientific attention due to their environmentally friendly and efficient properties.

View Article and Find Full Text PDF

Functionalized UiO-66 induces shallow electron traps in heterojunctions with InN for enhanced photocathodic water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 China. Electronic address:

Indium nitride (InN) exhibited significant potential as a photoelectrode material for photoelectrochemical (PEC) water splitting, attributed to its superior light absorption, high electron mobility, and direct bandgap. However, its practical application was constrained by rapid carrier recombination occurring within the bulk and at the surface. To address these limitations, researchers developed InN/UiO-66 heterojunction photoelectrodes, which markedly enhanced PEC water splitting for hydrogen production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!