The ABCG1 protein is centrally involved in reverse cholesterol transport from the vessel wall. Investigation of the effects of ABCG1 overexpression or knockdown in vivo has produced controversial results and strongly depended on the gene intervention model in which it was studied. Therefore, we investigated the effect of local overexpression of human ABCG1 in a novel model of vessel wall-directed adenoviral gene transfer in atherosclerotic rabbits. We conducted local, vascular-specific gene transfer by adenoviral delivery of human ABCG1 (Ad-ABCG1-GFP) in cholesterol-fed atherosclerotic rabbits in vivo. Endothelial overexpression of ABCG1 markedly reduced atheroprogression (plaque size) and almost blunted vascular inflammation, as shown by markedly reduced macrophage and smooth muscle cell invasion into the vascular wall. Also endothelial function, as determined by vascular ultrasound in vivo, was improved in rabbits after gene transfer with Ad-ABCG1-GFP. Therefore, both earlier and later stages of atherosclerosis were improved in this model of somatic gene transfer into the vessel wall. In contrast to results in transgenic mice, over-expression of ABCG1 by somatic gene transfer to the atherosclerotic vessel wall results in a significant improvement of plaque morphology and composition, and of vascular function in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504304 | PMC |
http://dx.doi.org/10.4081/hi.2012.e12 | DOI Listing |
PLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFJ Oral Microbiol
January 2025
Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China.
Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.
Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!