Background: The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO(2)] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasing atmospheric [CO(2)] has recently been shown to affect flowering time, and may produce even greater responses than increasing temperature. Much is known about the genes influencing flowering time, although their relevance to changing [CO(2)] is not well understood. Thus, we present the first study to identify QTL (Quantitative Trait Loci) that affect flowering time at elevated [CO(2)] in Arabidopsis thaliana.

Methodology/principal Findings: We developed our mapping population by crossing a genotype previously selected for high fitness at elevated [CO(2)] (SG, Selection Genotype) to a Cape Verde genotype (Cvi-0). SG exhibits delayed flowering at elevated [CO(2)], whereas Cvi-0 is non-responsive to elevated [CO(2)] for flowering time. We mapped one major QTL to the upper portion of chromosome 1 that explains 1/3 of the difference in flowering time between current and elevated [CO(2)] between the SG and Cvi-0 parents. This QTL also alters the stage at which flowering occurs, as determined from higher rosette leaf number at flowering in RILs (Recombinant Inbred Lines) harboring the SG allele. A follow-up study using Arabidopsis mutants for flowering time genes within the significant QTL suggests MOTHER OF FT AND TFL1 (MFT) as a potential candidate gene for altered flowering time at elevated [CO(2)].

Conclusion/significance: This work sheds light on the underlying genetic architecture that controls flowering time at elevated [CO(2)]. Prior to this work, very little to nothing was known about these mechanisms at the genomic level. Such a broader understanding will be key for better predicting shifts in plant phenology and for developing successful crops for future environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504057PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049028PLOS

Publication Analysis

Top Keywords

flowering time
36
elevated [co2]
28
time elevated
16
flowering
13
[co2]
10
time
9
major qtl
8
qtl alters
8
elevated
8
[co2] arabidopsis
8

Similar Publications

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Azaleas (Rhododendron simsii) are popular ornamental woody plants known for their bright colors; however, very limited studies have been reported on the process of flower petal pigmentation. In this study, we found significant differences in the anthocyanin contents of petals from different colored azaleas, and the results of quantitative real-time PCR indicated that the R2R3 MYB genes, RsMYB12, RsMYB90, and RsMYB123, showed significant expression changes during the petal coloration in azalea petals; therefore, we hypothesized that RsMYB12, RsMYB90, and RsMYB123 might involve in the coloring process of azalea petals by regulating anthocyanin synthesis. This work provides insights into the underlying mechanisms of petal pigmentation in R.

View Article and Find Full Text PDF

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Balanced mating type polymorphisms provide insight into the evolution of sexual reproduction strategies in plants, particularly within the Juglandaceae family (like walnuts and hickories).
  • Researchers have identified two distinct Mendelian inheritance mechanisms linked to ancient DNA polymorphisms that dictate whether flowers develop male or female first, showing a 1:1 genetic ratio.
  • A dominant haplotype associated with female-first flowering is linked to a gene related to trehalose-6-phosphate metabolism, suggesting complex regulation of gene expression and hints at sex chromosome-like evolution in these plants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!