Molecular mechanism by which surface antigen HP0197 mediates host cell attachment in the pathogenic bacteria Streptococcus suis.

J Biol Chem

Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.

Published: January 2013

Streptococcus suis, one of the most important and prevalent pathogens in swine, presents a major challenge to global public health. HP0197 is an S. suis surface antigen that was previously identified by immunoproteomics and can bind to the host cell surface. Here, we investigated the interaction between HP0197 and the host cell surface glycosaminoglycans (GAGs) using indirect immunofluorescence and cell adhesion inhibition assays. In addition, we determined that a novel 18-kDa domain in the N-terminal region of HP0197 functions as the GAG-binding domain. We then solved the three-dimensional structures of the N-terminal 18-kDa and C-terminal G5 domains using x-ray crystallography. Based on this structural information, the GAG-binding sites in HP0197 were predicted and subsequently verified using site-directed mutagenesis and indirect immunofluorescence. The results indicate that the positively charged residues on the exposed surface of the 18-kDa domain, which are primarily lysines, likely play a critical role in the HP0197-heparin interaction that mediates bacterium-host cell adhesion. Understanding this molecular mechanism may provide a basis for the development of effective drugs and therapeutic strategies for treating streptococcal infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543045PMC
http://dx.doi.org/10.1074/jbc.M112.388686DOI Listing

Publication Analysis

Top Keywords

host cell
12
molecular mechanism
8
surface antigen
8
streptococcus suis
8
cell surface
8
indirect immunofluorescence
8
cell adhesion
8
18-kda domain
8
surface
5
hp0197
5

Similar Publications

HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.

View Article and Find Full Text PDF

Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.

View Article and Find Full Text PDF

Background: Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Low agreement and frequent invalid controls in two SARS-CoV-2 T-cell assays in people with compromised immune function.

PLoS One

January 2025

Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.

T-cell response plays an important role in SARS-CoV-2 immunogenicity. For people living with HIV (PWH) and solid organ transplant (SOT) recipients there is limited evidence on the reliability of commercially available T-cell tests. We assessed 173 blood samples from 81 participants (62 samples from 35 PWH; 111 samples from 46 SOT recipients [lung and kidney]) with two commercial SARS-CoV-2 Interferon-γ (IFN-γ) release assays (IGRA; SARS-CoV-2 IGRA by Euroimmun, and IGRA SARS-CoV-2 by Roche).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!