Minocycline has been recently implicated in protection against focal cerebral ischemia reperfusion (I/R), but the protective effects on neurobehavioral abnormalities remains contradictory. In the present study, we investigate whether minocycline improves axonal regeneration and neurological function recovery by inhibiting the expression of the repulsive guidance molecular A (RGMa) after focal cerebral ischemia reperfusion. Male Sprague-Dawley (SD) rats were subjected to occlusion of the right middle cerebral artery (MCAO) for 2 h and 3 mg kg⁻¹ minocycline was injected intravenously immediately after reperfusion twice a day for 14 days. The staircase test and modified neurological severity score (mNSS) were performed to evaluate functional outcome and blood-brain barrier (BBB) permeability was assessed by Evan's blue dye extravasation (EB) at the expected time point. The expression of RGMa in ischemic cortex was measured by immunohistochemical staining and Western blot 2 weeks after MCAO. Neurofilament protein 200 (NF-200) immunohistochemical staining was used to assess axonal damage. Treatment with minocycline at a dose of 3 mg kg⁻¹ via the caudal vein significantly reduced the extravasation of EB, elevated mNSS and improved forelimb motor function as assessed by the staircase test when compared to the I/R group (P < 0.05). Moreover, axonal regrowth was enhanced in the minocycline treatment group when compared to the I/R group (P < 0.05). In addition, minocycline significantly reduced the expression of RGMa protein 2 weeks after MCAO as assessed by both immunostaining and Western blot. Our studies suggest that early minocycline treatment promotes neurological functional recovery and axonal regeneration in rats after MCAO, which might be mediated by down-regulating RGMa expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.21629DOI Listing

Publication Analysis

Top Keywords

axonal regeneration
12
minocycline
8
focal cerebral
8
cerebral ischemia
8
ischemia reperfusion
8
staircase test
8
expression rgma
8
immunohistochemical staining
8
western blot
8
weeks mcao
8

Similar Publications

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs.

View Article and Find Full Text PDF

Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.

View Article and Find Full Text PDF

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!