Scaffolds for tissue engineering are usually designed to support cell viability with large adhesion surfaces and high permeability to nutrients and oxygen. Recent experiments support the idea that, in addition to surface roughness, elasticity and chemistry, the macroscopic geometry of the substrate also contributes to control the kinetics of tissue deposition. In this study, a previously proposed model for the behavior of osteoblasts on curved surfaces is used to predict the growth of bone matrix tissue in pores of different shapes. These predictions are compared to in vitro experiments with MC3T3-E1 pre-osteoblast cells cultivated in two-millimeter thick hydroxyapatite plates containing prismatic pores with square- or cross-shaped sections. The amount and shape of the tissue formed in the pores measured by phase contrast microscopy confirms the predictions of the model. In cross-shaped pores, the initial overall tissue deposition is twice as fast as in square-shaped pores. These results suggest that the optimization of pore shapes may improve the speed of ingrowth of bone tissue into porous scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201200159DOI Listing

Publication Analysis

Top Keywords

tissue
8
tissue engineering
8
tissue deposition
8
pores
5
geometry factor
4
factor tissue
4
tissue growth
4
growth shape
4
shape optimization
4
optimization tissue
4

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!