Only recently polymers with intrinsic conductive properties have been studied in relation to their incorporation into bioactive scaffolds for use in tissue engineering. The reason for this interest is that such scaffolds could electrically stimulate cells and thus regulate specific cellular activities, and by this means influence the process of regeneration of those tissues that respond to electrical impulses. In our work, macroporous hydrogels are developed with controlled pore morphology and conductive properties to enable sufficient cell signaling to supply events inherent to nerve regeneration. A hybrid material has been prepared by in situ precipitation of polyaniline (PANi) in polyethyleneglycol diacrylate (PEGDA) solution, followed by crosslinking via UV irradiation. A porous architecture, characterized by macropores from 136 μm to 158 μm in size, has been achieved by sodium chloride particle leaching. In this work, we demonstrate that PANi synthesis and hydrogel crosslinking combine to enable the design of materials with suitable conductive behaviour. The presence of PANi evidently increased the electrical conductivity of the hybrid material from (1.1 ± 0.5) × 10(-3) mS/cm with a PANi content of 3wt%. The hydrophilic nature of PANi also enhanced water retention/proton conductivity by more than one order of magnitude. In vitro studies confirmed that 3 wt% PANi also improve the biological response of PC12 and hMSC cells. Hybrid PANi/PEGDA macroporous hydrogels supplement new functionalities in terms of morphological and conductive properties, both of which are essential prerequisites to drive nerve cells in regenerative processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201200152 | DOI Listing |
Macromol Rapid Commun
December 2024
Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China.
Poly(N-isopropyl acrylamide) (PNIPAm)-based smart hydrogels are widely employed in emerging applications such as drug delivery and tissue engineering, because their lower critical solution temperature (LCST) is close to physiological conditions. However, the dense chain collapse during the thermo-responsive phase transition restricts water diffusion, resulting in limited volumetric change. Here, a pure PNIPAm hydrogel that achieves a large-scale volume transition by incorporating PNIPAm microgels, is presented.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Tissue-resident memory T (T) cells preferentially reside in peripheral tissues, serving as key players in tumor immunity and immunotherapy. The lack of effective approaches for expanding T cells and delivering these cells in vivo hinders the exploration of T cell-mediated cancer immunotherapy. Here, we report a nanoparticle artificial antigen-presenting cell (nano-aAPC) ex vivo expansion approach and an in vivo delivery system for T cells.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
Cancer has become a highly prevalent disease and poses serious threats to human health. Conventional cancer treatments still face high risks of recurrence. Training the immune system to recognize and eliminate tumors via external stimulation, such as vaccines, emerges as a promising approach for cancer prevention and treatment.
View Article and Find Full Text PDFBiofabrication
December 2024
Université de Lorraine LIBio, F-54000 Nancy, France.
Bioprinting has enabled the creation of intricate scaffolds that replicate the physical, chemical, and structural characteristics of natural tissues. Recently, hydrogels have been used to fabricate such scaffolds for several biomedical applications and tissue engineering. However, the small pore size of conventional hydrogels impedes cellular migration into and remodeling of scaffolds, diminishing their regenerative potential.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!