Surface roughness affects various cell activities, including osteoblast motility, which may have an effect on bone regeneration. Defective cell signaling, which is associated with the slow motility of osteoblasts on a substrate with rough topology at nanometer dimensions (Ra = 123.8 ± 29.1 nm), was studied. Osteoblasts grown on the rough surface at nanometer dimensions showed the high activities of small GTPase RhoA and Rho-associated kinase (ROCK) on the rough surface at nanometer dimensions and downregulated Rac1 activity compared to the smooth surface. The inhibition of ROCK in the cells with Y-27632, a specific ROCK inhibitor, reversed the low-cell motility. In addition, the transfection of constitutively active Rac1 reversed the low-cell motility. However, Rac1 inhibition abolished the reversal of low-cell motility induced by ROCK inhibition. These results indicate that upregulated RhoA/ROCK activity suppresses Rac1 activity to decrease the motility of osteoblasts on a rough surface at nanometer dimensions, and the low motility of osteoblasts on a rough surface at nanometer dimensions can be reversed by ROCK inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34463 | DOI Listing |
J Phys Chem B
January 2025
Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.
We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Sci Adv
January 2025
Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.
View Article and Find Full Text PDFACS Nano
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!