AI Article Synopsis

  • L-arginine availability is crucial for macrophage activation in response to bacterial lipopolysaccharide, influencing various physiological functions and signaling pathways.
  • L-arginine enhances the production of reactive oxygen species and nitric oxide, and its effects involve the phosphorylation of mitogen-activated protein kinases and phospholipase C activity.
  • The study concludes that while macrophages can respond to inflammation without L-arginine, its presence significantly boosts their sensitivity to bacterial endotoxin.

Article Abstract

It is known that cells and organisms can indirectly "sense" changes in L-arginine availability via changes in the activity of various metabolic pathways. However, the mechanism(s) by which genes can be directly regulated by L-arginine in mammalian cells have not yet been elucidated. We investigated the effect of L-arginine in the in vivo model of peritoneal inflammation in mice and in vitro in RAW 264.7 macrophages. A detailed analysis of basic physiological functions and selected intracellular signaling cascades revealed that L-arginine is crucial for the acceleration of macrophage activation by bacterial lipopolysaccharide. L-arginine increased the production of reactive oxygen species, nitric oxide, release of Ca(2+), as well as inducible nitric oxide synthase expression. Interestingly, the effect of L-arginine on macrophage activation was dependent on the phosphorylation of mitogen-activated protein kinases and activity of phospholipase C. In RAW 264.7 cells, L-arginine was shown to modulate the response of macrophages toward lipopolysaccharide via the activation of G-protein-coupled receptors. According to our data, we concluded that L-arginine availability plays a key role in the initiation of intracellular signaling pathways that trigger the lipopolysaccharide-induced inflammatory responses in murine macrophages. Although macrophages are partially stimulated in the absence of extracellular L-arginine, the presence of this amino acid significantly accelerates the sensitivity of macrophages to bacterial endotoxin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12026-012-8379-2DOI Listing

Publication Analysis

Top Keywords

l-arginine
10
bacterial endotoxin
8
l-arginine availability
8
raw 2647
8
intracellular signaling
8
macrophage activation
8
nitric oxide
8
macrophages
5
unique role
4
role dietary
4

Similar Publications

Atg5 deficiency in basophils improves metabolism in lupus mice by regulating gut microbiota dysbiosis.

Cell Commun Signal

January 2025

Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.

Autophagic activation in immune cells, gut microbiota dysbiosis, and metabolic abnormalities have been reported separately as characteristics of systemic lupus erythematosus (SLE). Elucidating the crosstalk among the immune system, commensal microbiota, and metabolites is crucial to understanding the pathogenesis of autoimmune diseases. Emerging evidence shows that basophil activation plays a critical role in the pathogenesis of SLE; however, the underlying mechanisms remain largely unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology.

View Article and Find Full Text PDF

PRMT1-methylated MSX1 phase separates to control palate development.

Nat Commun

January 2025

State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.

Little is known about the regulation and function of phase separation in craniofacial developmental disorders. MSX1 mutations are associated with human cleft palate, the most common craniofacial birth defect. Here, we show that MSX1 phase separation is a vertebrate-conserved mechanism underlying embryonic palatal fusion.

View Article and Find Full Text PDF

Genome-wide DNA methylation analysis of sorghum leaves following foreign GA3 exposure under salt stress.

Genomics

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Sorghum is an increasingly popular topic of research in elucidating survival and adaptation approaches to augmented salinity. Nonetheless, little is known about the outcome and modulatory networks involved in the gibberellic acid (GA3)-induced salt stress alleviation in sorghum. Here, we identified 50 mg/L GA3 as the optimal concentration for sorghum ('Jitian 3') development under salt stress.

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!