Stable isotopes can illuminate resource usage by organisms, but effective interpretation is predicated on laboratory validation. Here we develop stable isotope clocks to track resource shifts in anadromous rainbow trout (Oncorhynchus mykiss). We used a diet-switch experiment and model fitting to quantify N stable isotope (δ(15)N) turnover rates and discrimination factors for seven tissues: plasma, liver, fin, mucus, red blood cells, muscle, and scales. Among tissues, diet-tissue δ(15)N discrimination factors ranged from 1.3 to 3.4 ‰. Model-supported tissue turnover half-lives ranged from 9.0 (fin) to 27.7 (scale) days. We evaluated six tissue turnover models using Akaike's information criterion corrected for small sample sizes. The use of equilibrium tissue values was supported in all tissues and two-compartment models were supported in plasma, liver, and mucus. Using parameter estimates and their uncertainty we developed stable isotope clocks to estimate the time since resource shifts. Longer turnover tissues provided accurate estimates of time since resource switch for durations approximately twice their half-life. Faster turnover tissues provided even higher precision estimates, but only within their half-life post-switch. Averaging estimates of time since resource shift from multiple tissues provided the highest precision estimates of time since resource shift for the longest duration (up to 64 days). This study therefore provides insight into physiological processes that underpin stable isotope patterns, explicitly tests alternative models, and quantifies key parameters that are the foundation of field-based stable isotope analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-012-2483-9 | DOI Listing |
Org Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, aromaticity-driven thio(seleno)ester group transfer from novel 1,4-dihydropyridine thio(seleno)esters to alkene feedstocks is disclosed by merging palladium and photoredox catalysis. In this process, photoactivation of dihydropyridine thio(seleno)esters is integrated with regioselective hydrometalation of alkenes, avoiding photoinduced Pd-C bond homolysis of organopalladium intermediates. Additionally, a regioselective hydroselenocarbonylation of an alkene is accomplished for the first time using a bench-stable selenoester reagent.
View Article and Find Full Text PDFFood Res Int
February 2025
Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy. Electronic address:
Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines worldwide for their unique qualitative properties. Organic authentication of rice by morphological assessment is unfeasible, while its market availability at different refining stages (brown, white) further increases the data variability.
View Article and Find Full Text PDFWater Res
January 2025
Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, 90014 Oulu, Finland.
Water Res
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Dufulin is an efficient antiviral agent for plants, however, data on its environmental fate, particularly concerning its transformation products (TPs), remain scarce. The TPs formed during abiotic degradation may pose significant environmental risks due to potential toxicity. Therefore, this study systematically investigated the hydrolysis and photolysis kinetics of Dufulin in aqueous solutions across various pH conditions.
View Article and Find Full Text PDFAnal Chem
January 2025
Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey.
Metabolite levels and turnover rates are necessary to understand metabolomic dynamics in a living organism fully. Amino acids can play distinct roles in various cellular processes, and their abnormal levels are associated with pathological conditions, including cancer. Therefore, their levels, especially turnover rates, may provide enormous information about a phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!