Although the topic of sensory integration has raised increasing interest, the differing behavioral outcome of combining unisensory versus multisensory inputs has surprisingly only been scarcely investigated. In the present experiment, observers were required to respond as fast as possible to (1) lateralized visual or tactile targets presented alone, (2) double stimulation within the same modality or (3) double stimulation across modalities. Each combination was either delivered within the same hemispace (spatially aligned) or in different hemispaces (spatially misaligned). Results show that the redundancy gains (RG) obtained from the cross-modal conditions were far greater than those obtained from combinations of two visual or two tactile targets. Consistently, we observed that the reaction time distributions of cross-modal targets, but not those of within-modal targets, surpass the predicted reaction time distribution based on the summed probability distributions of each constituent stimulus presented alone. Moreover, we found that the spatial alignment of the targets did not influence the RG obtained in cross-modal conditions, whereas within-modal stimuli produced a greater RG when the targets where delivered in separate hemispaces. These results suggest that within-modal and cross-modal integration are not only distinguishable by the amount of facilitation they produce, but also by the spatial configuration under which this facilitation occurs. Our study strongly supports the notion that estimates of the same event that are more independent produce enhanced integrative gains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-012-3308-0 | DOI Listing |
Neuroimage
February 2019
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
While part of the left ventral occipito-temporal cortex (left-vOT), known as the Visual Word Form Area, plays a central role in reading, the area also responds to speech. This cross-modal activation has been explained by three competing hypotheses. Firstly, speech is converted to orthographic representations that activate, in a top-down manner, written language coding neurons in the left-vOT.
View Article and Find Full Text PDFExp Brain Res
January 2013
Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, Canada.
Although the topic of sensory integration has raised increasing interest, the differing behavioral outcome of combining unisensory versus multisensory inputs has surprisingly only been scarcely investigated. In the present experiment, observers were required to respond as fast as possible to (1) lateralized visual or tactile targets presented alone, (2) double stimulation within the same modality or (3) double stimulation across modalities. Each combination was either delivered within the same hemispace (spatially aligned) or in different hemispaces (spatially misaligned).
View Article and Find Full Text PDFBehav Brain Res
October 2011
Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
Although human experience is multisensory in nature, previous research has focused predominantly on memory for unisensory as opposed to multisensory information. In this work, we sought to investigate behavioral and neural differences between the cued recall of cross-modal audiovisual associations versus within-modal visual or auditory associations. Participants were presented with cue-target associations comprised of pairs of nonsense objects, pairs of nonsense sounds, objects paired with sounds, and sounds paired with objects.
View Article and Find Full Text PDFJ Neurosci
April 2009
Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
Pooling and synthesizing signals across different senses often enhances responses to the event from which they are derived. Here, we examine whether multisensory response enhancements are attributable to a redundant target effect (two stimuli rather than one) or if there is some special quality inherent in the combination of cues from different senses. To test these possibilities, the performance of animals in localizing and detecting spatiotemporally concordant visual and auditory stimuli was examined when these stimuli were presented individually (visual or auditory) or in cross-modal (visual-auditory) and within-modal (visual-visual, auditory-auditory) combinations.
View Article and Find Full Text PDFJ Neurosci
November 2007
Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
Converging cortical influences from the anterior ectosylvian sulcus and the rostral lateral suprasylvian sulcus were shown to have a multisensory-specific role in the integration of sensory information in superior colliculus (SC) neurons. These observations were based on changes induced by cryogenic deactivation of these cortico-SC projections. Thus, although the results indicated that they played a critical role in integrating SC responses to stimuli derived from different senses (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!