A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide activates IL-6 production and expression in human renal epithelial cells. | LitMetric

AI Article Synopsis

  • The study explores the role of nitric oxide (NO) in the immune response of renal epithelial cells during urinary tract infections (UTIs), particularly focusing on interleukin-6 (IL-6) production.
  • Researchers infected human renal epithelial cells with uropathogenic E. coli (UPEC) and treated them with a NO donor, finding that NO significantly increased IL-6 production and its mRNA expression.
  • The findings suggest that NO enhances IL-6 production through specific signaling pathways (p38 MAPK and ERK1/2) and stabilizes IL-6 mRNA, indicating a new function for NO in the immune response to UTIs.

Article Abstract

Background/aims: Increased nitric oxide (NO) production or inducible form of NO synthase activity have been documented in patients suffering from urinary tract infection (UTI), but the role of NO in this infection is unclear. We investigated whether NO can affect the host response in human renal epithelial cells by modulating IL-6 production and mRNA expression.

Methods: The human renal epithelial cell line A498 was infected with a uropathogenic Escherichia coli (UPEC) strain and/or the NO donor DETA/NO. The IL-6 production and mRNA expression were evaluated by ELISA and real-time RT-PCR. IL-6 mRNA stability was evaluated by analyzing mRNA degradation by real-time RT-PCR.

Results: DETA/NO caused a significant (p < 0.05) increase in IL-6 production. Inhibitors of p38 MAPK and ERK1/2 signaling, but not JNK, were shown to significantly suppress DETA/NO-induced IL-6 production. UPEC-induced IL-6 production was further increased (by 73 ± 23%, p < 0.05) in the presence of DETA/NO. The IL-6 mRNA expression increased 2.1 ± 0.17-fold in response to DETA/NO, while the UPEC-evoked increase was pronounced (20 ± 4.5-fold). A synergistic effect of DETA/NO on UPEC-induced IL-6 expression was found (33 ± 7.2-fold increase). The IL-6 mRNA stability studies showed that DETA/NO partially attenuated UPEC-induced degradation of IL-6 mRNA.

Conclusions: NO was found to stimulate IL-6 in renal epithelial cells through p38 MAPK and ERK1/2 signaling pathways and also to increase IL-6 mRNA stability in UPEC-infected cells. This study proposes a new role for NO in the host response during UTI by modulating the transcription and production of the cytokine IL-6.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000345351DOI Listing

Publication Analysis

Top Keywords

il-6 production
24
renal epithelial
16
il-6 mrna
16
il-6
14
human renal
12
epithelial cells
12
mrna stability
12
increase il-6
12
nitric oxide
8
production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!