In the gonads and adrenal glands, the transient increase in steroidogenesis after hormonal stimulation requires modulation of steroidogenic acute regulatory protein (Star) expression and activity in a tightly regulated process involving cAMP and Ca(2+). In Leydig cells, the cAMP and Ca(2+) pathways account for most if not all of LH-induced steroidogenesis. Although the cAMP-activated molecular network has been well characterized in Leydig cells, little is known about the molecular cascade triggered by the Ca(2+) signaling pathway and the transcription factors responsible for mediating the genomic response. It is established that LH induces an increase in cytoplasmic Ca(2+) from the endoplasmic reticulum primarily through the ryanodine receptors. Previous reports also suggested a role of the Ca(2+) signaling pathway in Star expression based on the fact that inhibition of the Ca(2+)/calmodulin (CaM) protein kinase pathway greatly impaired Star expression in Leydig and adrenal cells. In this study, we used ryanodine receptors and CaM antagonists to show that the increase in intracellular Ca(2+) level is an essential modulator of progesterone synthesis through the regulation of Star gene expression in MA-10 Leydig cells. Furthermore, we mapped a Ca(2+)/CaM-sensitive element in the Star promoter, which led to the identification of the nuclear receptor 4A1 (NR4A1) as a key mediator of the Ca(2+)/CaM signaling pathway in these cells. These data provide new insights into the Ca(2+) molecular pathway essential for steroidogenesis in Leydig cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2012-1767 | DOI Listing |
J Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Cell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!