The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein.

Endocrinology

Reproduction, Mother and Youth Health, Centre Hospitalier Universitaire de Québec Research Centre, Centre Hospitalier del'Université Laval Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2.

Published: January 2013

In the gonads and adrenal glands, the transient increase in steroidogenesis after hormonal stimulation requires modulation of steroidogenic acute regulatory protein (Star) expression and activity in a tightly regulated process involving cAMP and Ca(2+). In Leydig cells, the cAMP and Ca(2+) pathways account for most if not all of LH-induced steroidogenesis. Although the cAMP-activated molecular network has been well characterized in Leydig cells, little is known about the molecular cascade triggered by the Ca(2+) signaling pathway and the transcription factors responsible for mediating the genomic response. It is established that LH induces an increase in cytoplasmic Ca(2+) from the endoplasmic reticulum primarily through the ryanodine receptors. Previous reports also suggested a role of the Ca(2+) signaling pathway in Star expression based on the fact that inhibition of the Ca(2+)/calmodulin (CaM) protein kinase pathway greatly impaired Star expression in Leydig and adrenal cells. In this study, we used ryanodine receptors and CaM antagonists to show that the increase in intracellular Ca(2+) level is an essential modulator of progesterone synthesis through the regulation of Star gene expression in MA-10 Leydig cells. Furthermore, we mapped a Ca(2+)/CaM-sensitive element in the Star promoter, which led to the identification of the nuclear receptor 4A1 (NR4A1) as a key mediator of the Ca(2+)/CaM signaling pathway in these cells. These data provide new insights into the Ca(2+) molecular pathway essential for steroidogenesis in Leydig cells.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2012-1767DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
leydig cells
16
star expression
12
nuclear receptor
8
steroidogenic acute
8
acute regulatory
8
regulatory protein
8
camp ca2+
8
ca2+ signaling
8
ryanodine receptors
8

Similar Publications

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!