Background: Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results: Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion: Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549760PMC
http://dx.doi.org/10.1186/1478-811X-10-36DOI Listing

Publication Analysis

Top Keywords

sh3 domain
24
tyrosine phosphorylation
16
caskin1 sh3
16
complex formation
12
scaffold proteins
12
tyrosine
8
domain
8
caskin proteins
8
tyrosine kinase
8
tyrosine residues
8

Similar Publications

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

Background: Epileptic activity is increasingly recognized as a contributor to Alzheimer's Disease (AD) pathology. In AD models, endogenous tau contributes to epileptic activity and associated cognitive deficits through mechanisms that are not fully understood. Increased attention is being directed towards tau's interactions with proteins that regulate neuronal activity, particularly tau's proline rich domain and its binding to SH3-containing proteins.

View Article and Find Full Text PDF

Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation.

Arch Biochem Biophys

December 2024

Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Article Synopsis
  • c-Src is a non-receptor tyrosine kinase involved in important cellular functions like growth and movement, and its dysfunction is linked to cancer progression.
  • Current treatments mainly target its kinase domain, but drug resistance limits their effectiveness.
  • This study discovered three compounds that effectively bind to the SH3 domain of c-Src and inhibit its activity, suggesting new potential anti-cancer drugs that could overcome resistance issues.
View Article and Find Full Text PDF

The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.

View Article and Find Full Text PDF

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!