The Ubiquitin-Proteasome System (UPS) has been considered as privileged pharmacological target for drug development due to the tremendous potential for intervention on multiple pathologies including cancer, neurodegenerative diseases, immune diseases and multiple infections. The pharmacological potential of the UPS was revealed after the unpredicted success of proteasome inhibitors for the treatment of some haematological malignancies. After a decade of clinical use of bortezomib, this review summarizes part of the learned experience and recent advances on the development of alternative inhibitors of the UPS. A new generation of inhibitors, including those targeting subsets of proteasomes, are under investigation and it is likely that some of them will reach clinical trials. Beyond the proteasome inhibition, there are also other targets that can be blocked to attain directly or indirectly the UPS system. The ubiquitylation status of protein substrates is intimately linked to other post-translational modifications of the ubiquitin family, increasing the number of potential targets for clinical intervention. In addition to the obvious subsets of ubiquitin-conjugating and de-conjugating enzymes, a group of enzymatic activities regulating SUMOylation or NEDDylation have a potential impact on the activity of the UPS. The novel strategies explore the active site of those enzymes and/or the target recognition surfaces. The first inhibitors of these parallel pathways appeared to tackle a limited number of protein targets playing important roles on diverse pathologies. Although, a large majority of them have not yet been tested in clinical trials, the new inhibitors are expected to have fewer side effects than proteasome inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612811319220014 | DOI Listing |
Nat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
Algae are a rich source of bioactive compounds that have a wide range of beneficial effects on human health and can show significant potential in the treatment of hematological malignancies such as leukemia, lymphoma, and multiple myeloma. These diseases often pose a therapeutic challenge despite recent advances in treatment (e.g.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.
Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
Background: The high mortality rate of metastatic colorectal cancer (CRC) is primarily attributed to resistance to chemotherapy, where cancer stem cells (CSCs) play a crucial role. Deubiquitinating enzymes are essential regulators of CSC maintenance, making them potential targets for eliminating CSCs and overcoming chemotherapy resistance. This study aims to identify key deubiquitinating enzymes regulating CSCs and drug resistance of CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!