Simulations of symptomatic treatments for Alzheimer's disease: computational analysis of pathology and mechanisms of drug action.

Alzheimers Res Ther

In Silico Biosciences, Inc., 405 Waltham Street, Lexington, MA 02421 USA.

Published: May 2014

Introduction: A substantial number of therapeutic drugs for Alzheimer's disease (AD) have failed in late-stage trials, highlighting the translational disconnect with pathology-based animal models.

Methods: To bridge the gap between preclinical animal models and clinical outcomes, we implemented a conductance-based computational model of cortical circuitry to simulate working memory as a measure for cognitive function. The model was initially calibrated using preclinical data on receptor pharmacology of catecholamine and cholinergic neurotransmitters. The pathology of AD was subsequently implemented as synaptic and neuronal loss and a decrease in cholinergic tone. The model was further calibrated with clinical Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog) results on acetylcholinesterase inhibitors and 5-HT6 antagonists to improve the model's prediction of clinical outcomes.

Results: As an independent validation, we reproduced clinical data for apolipoprotein E (APOE) genotypes showing that the ApoE4 genotype reduces the network performance much more in mild cognitive impairment conditions than at later stages of AD pathology. We then demonstrated the differential effect of memantine, an N-Methyl-D-aspartic acid (NMDA) subunit selective weak inhibitor, in early and late AD pathology, and show that inhibition of the NMDA receptor NR2C/NR2D subunits located on inhibitory interneurons compensates for the greater excitatory decline observed with pathology.

Conclusions: This quantitative systems pharmacology approach is shown to be complementary to traditional animal models, with the potential to assess potential off-target effects, the consequences of pharmacologically active human metabolites, the effect of comedications, and the impact of a small number of well described genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580459PMC
http://dx.doi.org/10.1186/alzrt153DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
animal models
8
simulations symptomatic
4
symptomatic treatments
4
treatments alzheimer's
4
disease computational
4
computational analysis
4
pathology
4
analysis pathology
4
pathology mechanisms
4

Similar Publications

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

Sensors (Basel)

December 2024

Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.

View Article and Find Full Text PDF

Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.

View Article and Find Full Text PDF

Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline.

Sensors (Basel)

December 2024

Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.

Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.

View Article and Find Full Text PDF

The genus (Amaryllidaceae) currently contains 25 plant species naturally occurring in Europe and the Middle East region. These perennial bulbous plants possess well-known medicinal and ornamental qualities. Alkaloid diversity is their most distinctive phytochemical feature.

View Article and Find Full Text PDF

Linn ( L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical regions of the Eastern World.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!