Objective: holoprosencephaly is the most common forebrain malformation syndrome with a multifactorial etiology. Currently, mutations are identified in 5-10% of non syndromic, non-chromosomal cases in at least 12 genes. We report the molecular prenatal diagnosis of a fetus with alobar holoprosencephaly.

Methods: CTG band karyotyping and array CGH genome-wide cytogenetic screenings were done, in conjunction with DNA sequence analyses of the SHH, ZIC2, SIX3 and TGIF genes in search of a molecular etiology and with comparison of findings to prior cases.

Results: standard CTG band karyotyping and array CGH genome-wide screening failed to identify plausible chromosome imbalances or structural anomalies. However, extensive sequencing of the genomic DNA from the fetus and both parents on all exon and exon-intron boundaries of the four most commonly mutated genes: SHH, ZIC2, SIX3 and TGIF, identified codon 100 of the sonic hedgehog (SHH) gene having a hotspot for loss-of-function mutations in our case and others.

Conclusion: mutations in codon 100 of SHH were discovered in both sporadic and autosomal dominant inherited cases with evidence of variable expressivity and penetrance. Collectively, this study reinforces the complexity of genotype-phenotype correlations in the prenatal diagnosis of holoprosencephalic fetuses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503521PMC

Publication Analysis

Top Keywords

prenatal diagnosis
12
molecular prenatal
8
genotype-phenotype correlations
8
ctg band
8
band karyotyping
8
karyotyping array
8
array cgh
8
cgh genome-wide
8
shh zic2
8
zic2 six3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!