A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell Structure Controls Endothelial Cell Migration under Fluid Shear Stress. | LitMetric

Cell Structure Controls Endothelial Cell Migration under Fluid Shear Stress.

Cell Mol Bioeng

Department of Biomedical Engineering, University of Virginia, P. O. Box 800759, Charlottesville, Virginia 22908.

Published: June 2009

Cobblestone-shaped endothelial cells in confluent monolayers undergo triphasic mechanotaxis in response to steady unidirectional shear stress, but cells that are elongated and aligned on micropatterned substrates do not change their migration behavior in response to either perpendicular or parallel flow. Whether mechanotaxis of micropatterned endothelial cell layers is suppressed by elongated cytoskeletal structure or limited availability of adhesion area remains unknown. In this study, cells were examined on wide (100-200 μm) micropatterned lines after onset of shear stress. Cells in center regions of the lines exhibited cobblestone morphology and triphasic mechanotaxis behavior similar to that in unpatterned monolayers, whereas cells along the edges migrated parallel to the line axis regardless of the flow direction. When scratch wounds were created perpendicular to the micropatterned lines, the cells became less elongated before migrating into the denuded area. In sparsely populated lines oriented perpendicular to the flow direction, elongated cells along the upstream edge migrated parallel to the edge for 7 h before migrating parallel to the shear stress direction, even though adhesion area existed in the downstream direction. Thus, cytoskeletal structure and not available adhesion area serves as the dominant factor in determining whether endothelial mechanotaxis occurs in response to shear stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505107PMC
http://dx.doi.org/10.1007/s12195-009-0060-zDOI Listing

Publication Analysis

Top Keywords

shear stress
20
adhesion area
12
endothelial cell
8
triphasic mechanotaxis
8
stress cells
8
cells elongated
8
cytoskeletal structure
8
micropatterned lines
8
migrated parallel
8
flow direction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!