The environmental arylamine mutagens are implicated in the etiology of various sporadic human cancers. Arylamine-modified dG lesions were studied in two fully paired 11-mer duplexes with a -G*CN- sequence context, in which G* is a C8-substituted dG adduct derived from fluorinated analogs of 4-aminobiphenyl (FABP), 2-aminofluorene (FAF) or 2-acetylaminofluorene (FAAF), and N is either dA or dT. The FABP and FAF lesions exist in a simple mixture of 'stacked' (S) and 'B-type' (B) conformers, whereas the N-acetylated FAAF also samples a 'wedge' (W) conformer. FAAF is repaired three to four times more efficiently than FABP and FAF. A simple A- to -T polarity swap in the G*CA/G*CT transition produced a dramatic increase in syn-conformation and resulted in 2- to 3-fold lower nucleotide excision repair (NER) efficiencies in Escherichia coli. These results indicate that lesion-induced DNA bending/thermodynamic destabilization is an important DNA damage recognition factor, more so than the local S/B-conformational heterogeneity that was observed previously for FAF and FAAF in certain sequence contexts. This work represents a novel 3'-next flanking sequence effect as a unique NER factor for bulky arylamine lesions in E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553991 | PMC |
http://dx.doi.org/10.1093/nar/gks1077 | DOI Listing |
Chem Res Toxicol
January 2025
Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Nucleotide excision repair is a crucial cellular mechanism that ensures genomic stability, thereby preventing mutations that can lead to cancer. The human XPC and its yeast ortholog Rad4 protein complexes are central to this process and were the focus of the study. We used surface plasmon resonance and differential scanning fluorimetry to study the binding characteristics of XPC and Rad4 when bound to the bulky cluster di-FAAF-containing 55-mer duplex DNA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!