For the first time, a C(60) derivative (1) and two different lanthanum metallofullerene derivatives, La@C(82)Py(2) and La(2)@C(80)Py (3), that feature a pyridyl group as a coordination site for transition-metal ions have been synthesized and integrated as electron acceptors into coordinative electron-donor/electron-acceptor hybrids. Zinc tetraphenylporphyrin (ZnP) served as an excited-state electron donor in this respect. Our investigations, by means of steady-state and time-resolved photophysical techniques found that electron transfer governs the excited-state deactivation in all of these systems, namely 1/ZnP, 2/ZnP, and 3/ZnP, whereas, in the ground state, notable electronic interactions are lacking. Variation of the electron-accepting fullerene or metallofullerene moieties provides the incentive for fine-tuning the binding constants, the charge-separation kinetics, and the charge-recombination kinetics. To this end, the binding constants, which ranged from log K(assoc) =3.94-4.38, are dominated by axial coordination, with minor contributions from the orbital overlap of the curved and planar π systems. The charge-separation and charge-recombination kinetics, which are in the order of 10(10) and 10(8) s(-1) , relate to the reduction potential of the fullerene and metallofullerenes, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201202661DOI Listing

Publication Analysis

Top Keywords

binding constants
8
charge-recombination kinetics
8
coordinative interactions
4
interactions porphyrins
4
porphyrins c60
4
c60 la@c82
4
la@c82 la2@c80
4
la2@c80 time
4
time c60
4
c60 derivative
4

Similar Publications

Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques.

Anal Bioanal Chem

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.

View Article and Find Full Text PDF

Solution-based affinity assays are used for the selection and characterization of proteins that could be developed into therapeutic molecules. However, these assays have limitations for cell-surface proteins as in most cases their purification requires detergent solubilization and are unlikely to assume conformations in solution that resemble their native states in cell membranes. This report describes a novel electrochemiluminescence-based method, called MSD-CAT, for the affinity analysis of antibodies binding to cell-surface receptors.

View Article and Find Full Text PDF

Helical Quintulene: Synthesis, Chirality, and Supramolecular Assembly.

Angew Chem Int Ed Engl

January 2025

Xiamen University, Department of Chemistry, Siminnan Road 422, 361005, Xiamen, CHINA.

Quintulene is a quintuply symmetrical cycloarene with a positively curved molecular geometry. First described by Staab and Sauer in 1984, its successful synthesis was not achieved until 2020. Due to the challenges posed by its positive curvature, structural extensions of quintulene have been studied rarely.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!