Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was aimed to establish a buffalo mammary epithelial cells (BuMECs) line and maintain it for long-term by subculturing. BuMECs isolated from lactating buffalo mammary glands were cultured on a collagen matrix gel. BuMECs expressed significant amounts of the epithelial cell specific marker cytokeratin 18 as determined by immunohistochemistry. The BuMECs displayed monolayer, cobble-stone morphology, and formed lumen-, dome-, and duct-like structures. Furthermore, they were capable of synthesizing CSN2, BLG, ACACA, and BTN1A1, showed viability after thawing and expressed milk protein genes. The enhanced green fluorescent protein gene was transferred successfully into the BuMECs using lipofection method and the transfected cells could be maintained for long-term in culture by subculturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-012-9557-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!