A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes. | LitMetric

Objectives: Cooking fumes contain aldehydes, alkanoic acids, polycyclic aromatic hydrocarbons, and heterocyclic compounds. The inhalation of cooking fumes entails a risk of deleterious health effects. The aim of this study was to see if the inhalation of cooking fumes alters the expression of inflammatory reactions in the bronchial mucosa and its subsequent systemic inflammatory response in blood biomarkers.

Methods: Twenty-four healthy volunteers stayed in a model kitchen on two different occasions for 2 or 4 h. On the first occasion, there was only exposure to normal air, and on the second, there was exposure to controlled levels of cooking fumes. On each occasion, samples of blood, exhaled air, and exhaled breath condensate (EBC) were taken three times in 24 h and inflammatory markers were measured from all samples.

Results: There was an increase in the concentration of the d-dimer in blood from 0.27 to 0.28 mg ml(-1) on the morning after exposure to cooking fumes compared with the levels the morning before (P-value = 0.004). There was also a trend of an increase in interleukin (IL)-6 in blood, ethane in exhaled air, and IL-1β in EBC after exposure to cooking fumes. In a sub-analysis of 12 subjects, there was also an increase in the levels of ethane--from 2.83 parts per billion (ppb) on the morning before exposure to cooking fumes to 3.53 ppb on the morning after exposure (P = 0.013)--and IL-1β--from 1.04 on the morning before exposure to cooking fumes to 1.39 pg ml(-1) immediately after (P = 0.024).

Conclusion: In our experimental setting, we were able to unveil only small changes in the levels of inflammatory markers in exhaled air and in blood after short-term exposure to moderate concentrations of cooking fumes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567812PMC
http://dx.doi.org/10.1093/annhyg/mes069DOI Listing

Publication Analysis

Top Keywords

cooking fumes
40
exposure cooking
20
exhaled air
16
morning exposure
16
inflammatory markers
12
cooking
10
fumes
10
exposure
9
blood exhaled
8
short-term exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!