Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-012-0978-0DOI Listing

Publication Analysis

Top Keywords

air crews
20
flame retardants
12
fume events
12
cabin air
12
metabolite levels
12
occupational exposure
8
air
8
exposure air
8
tricresyl phosphate
8
phosphate metabolites
8

Similar Publications

Background: There is a lack of data support and scientific validation of the Exemption Approach policy for responding to the COVID-19 pandemic, in terms of protecting the health of flight crews and meeting the requirements for passenger and cargo transportation in emergencies, in terms of its safety and the circumstances that contribute to pilots' symptoms of jet lag and the risk of fatigue.

Methods: To assess pilots' sleep issues related to jet lag symptoms and fatigue, this study evaluated an example of risk management for flight crews on flights across time zones during the COVID-19 pandemic. To evaluate the crew's sleep status, variations in sleep index changes between before and after the flights, variations in sleepiness levels, and data on sleep indexes recorded by ActiGraph bracelets were collected from 146 crew members before and after flights eastward or westward across time zones.

View Article and Find Full Text PDF

The transport of intubated patients is a common but high-risk scenario for air medical transport crews. In the case presented, a physician-nurse HEMS crew responded for the interfacility transfer of a patient with severe angioedema who had undergone awake fiberoptic nasotracheal intubation in the referring emergency department. The endotracheal tube had been damaged, however, and could not be adequately secured for transport.

View Article and Find Full Text PDF

Regenerative life support systems for space crews recycle waste into water, food, and oxygen using different organisms. The European Space Agency's MELiSSA program uses the cyanobacterium Limnospira indica PCC8005 for air revitalization and food production. Before space use, components' compatibility with reduced gravity was tested.

View Article and Find Full Text PDF

Introduction: In operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents.

View Article and Find Full Text PDF

Introduction: Wildland firefighters are exposed through the lungs and skin to particulate matter, fumes, and vapors containing polycyclic aromatic hydrocarbons (PAH). Wearing respiratory protection should reduce pulmonary exposure, but there is uncertainty about the most effective and acceptable type of mask.

Methods: Firefighters from 6 unit crews working with the British Columbia Wildfire Service were approached and those consenting were randomly allocated within each crew to a "no mask" control group or to use 1 of 3 types of masks: X, half-face respirator with P100/multi gas cartridge; Y, cloth with alpaca filter; Z mesh fabric with a carbon filter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!