Micropropagation of Helleborus through axillary budding.

Methods Mol Biol

Istituto Regionale per la Floricoltura (IRF), Sanremo, Italy.

Published: May 2013

Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-074-8_20DOI Listing

Publication Analysis

Top Keywords

acid mg/l
8
mg/l
5
micropropagation helleborus
4
helleborus axillary
4
axillary budding
4
budding helleborus
4
helleborus genus
4
genus belonging
4
belonging ranunculaceae
4
ranunculaceae family
4

Similar Publications

Background: Chronic exposure to low-level environmental lead (Pb) causes several health effects in humans. Its biomonitoring by non-invasive biomarkers is imperative to identify Pb exposure in the occupationally unexposed general public.

Objective: To quantify urinary lead (U-Pb) and urinary δ-Aminolevulinic acid (ALA) in the general population of West Bengal, India, and identify the impact of routine life activities (smoking habit, traveling, and cooking activities) and sociodemographic factors on U-Pb and U-ALA levels.

View Article and Find Full Text PDF

Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress.

J Pineal Res

March 2025

College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.

View Article and Find Full Text PDF

Microbial synthesis of m-tyrosine via whole-cell biocatalysis.

Enzyme Microb Technol

January 2025

Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States. Electronic address:

Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E.

View Article and Find Full Text PDF

Although iron-doped hydroxyapatite (Fe-HAP) and its composites have been reported to immobilize arsenic (As), lead (Pb), and cadmium (Cd), its practical application is limited by the inefficient release of iron and phosphate. In this study, Ochrobactrum anthropic, a phosphate-solubilizing bacterium isolated from a lead-zinc smelting site, was employed to enhance multi-heavy metal immobilization in Fe-HAP-amended soils. O.

View Article and Find Full Text PDF

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!