Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production.

Appl Biochem Biotechnol

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, People's Republic of China.

Published: January 2013

Here we first improved the ε-PL productivity in five species of wild-type strains in Streptomyces (Streptomyces padanus, Streptomyces griseofuscus, Streptomyces graminearus, Streptomyces hygroscopicus, and Streptomyces albulus) by genome shuffling. Then all the shuffled strains were suffered from an interspecific hybridization through stochastic protoplast fusion. One hybrid designated FEEL-1 was selected by morphology and spore color with ε-PL production of 1.12 g/L in shake flask, about 2.75-fold higher than that in wild types. The ε-PL production of FEEL-1 was then obtained as 24.5 g/L in fed-batch fermentation, which was 63-81 % higher than those in shuffled strains. Random amplified polymorphic DNA revealed that FEEL-1 was probably hybridized from S. padanus, S. griseofuscus, and S. albulus. Activities of several enzymes in FEEL-1 (hexokinase, phosphoenolpyruvate carboxylase, aspartokinase, and citrate synthase) were more active than those in shuffled strains, which was a possible reason for the enhancement of ε-PL production. This research highlights the importance of genome shuffling along with interspecific hybridization as a new breeding strategy for improving phenotype of industrial strains.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-012-9969-0DOI Listing

Publication Analysis

Top Keywords

genome shuffling
12
interspecific hybridization
12
shuffled strains
12
ε-pl production
12
shuffling interspecific
8
streptomyces
7
strains
5
combining genome
4
hybridization streptomyces
4
streptomyces improved
4

Similar Publications

Diversity of Endolysin Domain Architectures in Bacteriophages Infecting Bacilli.

Biomolecules

December 2024

Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia.

The increasing number of antibiotic-resistant bacterial pathogens is a serious problem in medicine. Endolysins are bacteriolytic enzymes of bacteriophages, and a promising group of enzymes with antibacterial properties. Endolysins of bacteriophages infecting Gram-positive bacteria have a modular domain organization.

View Article and Find Full Text PDF

The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review.

Probiotics Antimicrob Proteins

December 2024

Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.

This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures.

View Article and Find Full Text PDF

Genome Combination Improvement Strategy Promotes Efficient Spinosyn Biosynthesis in .

J Agric Food Chem

December 2024

Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.

Spinosyns are secondary metabolites produced by known for their potent insecticidal properties and broad pesticidal spectrum. We report significant advancements in spinosyn biosynthesis achieved through a genome combination improvement strategy in . By integrating modified genome shuffling with ultraviolet mutation and multiomics analysis, we developed a high-yield spinosyn strain designated as YX2.

View Article and Find Full Text PDF

The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance (AMR) gene cassettes are genetic segments that can be captured and rearranged by integrons, allowing organisms to adapt to antibiotic pressures, and these integrons exist in both chromosomes and plasmids.
  • This study focuses on a specific AMR gene, linked to a class A carbapenemase first detected in Greece, to analyze global patterns of integron diversity using a novel pangenome graph-based method.
  • Findings reveal chromosomal integrons are more consistent and conserved in structure, mainly found in a specific strain (ST235), while plasmid-associated integrons display more variability, suggesting that plasmids may facilitate more dynamic genetic recombination.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!