The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H(2)O(2), O(3)/AC, O(3)/H(2)O(2)) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1,080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O(3)/H(2)O(2) and O(3)/AC systems is faster than that with only O(3). The technologies based on AOPs (UV/H(2)O(2), O(3)/H(2)O(2), O(3)/AC) significantly improve the degradation of DEP compared to conventional technologies (O(3), UV). AC adsorption, UV/H(2)O(2), O(3)/H(2)O(2), and O(3)/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O(3)/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2012.10.062 | DOI Listing |
Water Res
July 2016
Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Av. de Elvas s/n, 06071 Badajoz, Spain.
This paper reports the removal of the s-triazine herbicide terbuthylazine (TBA) from aqueous solution by various treatment methods including adsorption onto activated carbon (AC) and multiwalled carbon nanotubes (MWCNT), UV254 photolysis, UV254/H2O2, single ozonation, O3/H2O2, catalytic ozonation (AC, MWCNT and TiO2 as catalysts) and some solar driven processes such as TiO2 photocatalytic oxidation and photo-ozonation. TBA was adsorbed onto AC and MWCNT following a pseudo-second order kinetics and Freundlich isotherm. Rapid small scale column tests showed that TBA could be removed from solution by adsorption onto AC better than atrazine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!