Study of the interactions between the key spore coat morphogenetic proteins CotE and SpoVID.

J Struct Biol

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Published: February 2013

AI Article Synopsis

  • Bacillus subtilis spores have a protective outer layer known as the spore coat, which is made up of over 70 proteins, including specific morphogenetic proteins that influence its formation.
  • This study focuses on the interaction between two key morphogenetic proteins, SpoVID and CotE, which are thought to work together in assembling the spore coat.
  • Through techniques like molecule recognition force spectroscopy and bacterial two-hybrid systems, researchers demonstrated that SpoVID interacts directly with CotE, suggesting a fundamental structural framework for the assembly of other coat proteins.

Article Abstract

The capability of Bacillus subtilis spores to withstand extreme environmental conditions is thought to be conferred especially by their outermost proteinaceous protective layer, called the spore coat. Of the over 70 proteins that form the spore coat, only a small subset of them affect its morphogenesis, they are referred to as morphogenetic proteins. In this study we investigated the interaction between two spore coat morphogenetic proteins SpoVID and CotE. SpoVID is involved in the process of spore surface encirclement by individual coat proteins, these include CotE, which controls the assembly of the outer coat layer. Both proteins were proposed to be recruited to a common protein scaffold, but their direct association has not been previously shown. Here we studied the interactions between CotE and SpoVID in vitro for the first time by using molecule recognition force spectroscopy, which allows the detection of piconewton forces between conjugated biological pairs and also facilitates the investigation of dynamic processes. The most probable CotE-CotE unbinding force was 49.4±0.1pN at a loading rate of 3.16×10³ pN/s while that of SpoVID-CotE was 26.5±0.6pN at a loading rate of 7.8×10² pN/s. We further analyzed the interactions with the bacterial two hybrid system and pull-down experiments, which also indicate that SpoVID interacts directly with CotE. In combination with the previously identified direct contacts among SpoIVA, SpoVID and SafA, our data imply that the physical association of key morphogenetic proteins forms a basic skeleton where other coat proteins could be attached.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2012.11.002DOI Listing

Publication Analysis

Top Keywords

spore coat
16
morphogenetic proteins
16
cote spovid
12
coat proteins
12
coat morphogenetic
8
proteins
8
loading rate
8
coat
7
spovid
6
spore
5

Similar Publications

Recent progress in proteins regulating the germination of spores.

J Bacteriol

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.

Article Synopsis
  • Bacterial spores can stay dormant for years but can germinate when conditions are right, involving complex signal pathways.
  • Recent studies have revealed details about proteins crucial for this process, particularly the GerA receptor and SpoVAF/FigP complex, which help with ion release.
  • The research also highlights how spore quality impacts germination, focusing on proteins involved in sporulation and factors like glutamate breakdown and coat protein assembly, enhancing our understanding of the germination mechanism.
View Article and Find Full Text PDF

spores are essential for initiation, recurrence and transmission of the disease. The spore surface layers are composed of an outermost exosporium layer that surrounds another proteinaceous layer, the spore coat. These spore surfaces layers are responsible for initial interactions with the host and spore resistance properties contributing to transmission and recurrence of CDI.

View Article and Find Full Text PDF

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Hydrophobins are small amphiphilic proteins that confer filamentous fungal hydrophobicity needed for hyphal growth, development, dispersal and adhesion to host and substrata. In insect-pathogenic Beauveria bassiana, nine hydrophobins (class I Hyd1A-F and class II Hyd2A-C) were proven to localize on the cell walls of aerial hyphae and conidia but accumulate in the vacuoles and vesicles of submerged hyphae and blastospores, respectively. Conidial hydrophobicity, adhesion to insect cuticle, virulence via normal cuticle infection and dispersal potential were significantly more reduced by the hyd1A deletion leading to complete ablation of slender rodlets on conidial coat than the hyd1B deletion, which caused a failure to assemble morphologically irregular rodlets into orderly bundles.

View Article and Find Full Text PDF

Effect of surfactants on inactivation of Bacillus subtilis spores by chlorine.

Water Res

December 2024

School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland. Electronic address:

Bacterial spores pose significant risks to human health, yet the inactivation of spores is challenging due to their unique structures and chemical compositions. This study investigated the synergistic effect between surfactants and chlorine on the inactivation kinetics of Bacillus subtilis spores. Two surfactants, cocamidopropyl betaine (CAPB) and cetyltrimethylammonium chloride (CTMA) were selected to investigate chlorine disinfection in absence and presence of surfactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!