The human SSB homologue 1 (hSSB1) has been shown to facilitate homologous recombination and double-strand break signalling in human cells. Here, we compare the DNA-binding properties of the SOSS1 complex, containing SSB1, with Replication Protein A (RPA), the primary single-strand DNA (ssDNA) binding complex in eukaryotes. Ensemble and single-molecule approaches show that SOSS1 binds ssDNA with lower affinity compared to RPA, and exhibits less stable interactions with DNA substrates. Nevertheless, the SOSS1 complex is uniquely capable of promoting interaction of human Exo1 with double-strand DNA ends and stimulates its activity independently of the MRN complex in vitro. Both MRN and SOSS1 also act to mitigate the inhibitory action of the Ku70/80 heterodimer on Exo1 activity in vitro. These results may explain why SOSS complexes do not localize with RPA to replication sites in human cells, yet have a strong effect on double-strand break resection and homologous recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545304 | PMC |
http://dx.doi.org/10.1038/emboj.2012.314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!