Cyclestheria hislopi is thought to be the only extant species of Cyclestherida. It is the sister taxon of all Cladocera and displays morphological characteristics intermediate of Spinicaudata and Cladocera. Using one mitochondrial (COI) and two nuclear (EF1α and 28S rRNA) markers, we tested the hypothesis that C. hislopi represents a single circumtropic species. South American (French Guiana), Asian (India, Indonesia, Singapore) and several Australian populations were included in our investigation. Phylogenetic and genetic distance analyses revealed remarkable intercontinental genetic differentiation (uncorrected p-distances COI>13%, EF1α>3% and 28S>4%). Each continent was found to have at least one distinct Cyclestheria species, with Australia boasting four distinct main lineages which may be attributed to two to three species. The divergence of these species (constituting crown group Cyclestherida) was, on the basis of phylogenetic analyses of COI and EF1α combined with molecular clock estimates using several fossil branchiopod calibration points or a COI substitution rate of 1.4% per million years, dated to the Cretaceous. This was when the South American lineage split from the Asian-Australian lineage, with the latter diverging further in the Paleogene. Today's circumtropic distribution of Cyclestheria may be best explained by a combination of Gondwana vicariance and later dispersal across Asia and Australia when the tectonic plates of the two continents drew closer in the early Miocene. The lack of morphological differentiation that has taken place in this taxon over such a long evolutionary period contrasts with the high level of differentiation and diversification observed in its sister taxon the Cladocera. Further insights into the evolution of Cyclestheria may help us to understand the evolutionary success of the Cladocera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2012.11.005 | DOI Listing |
J Morphol
October 2020
Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
Great diversity is found in morphology and functionality of arthropod appendages, both along the body axis of individual animals and between different life-cycle stages. Despite many branchiopod crustaceans being well known for displaying a relatively simple arrangement of many serially post-maxillary appendages (trunk limbs), this taxon also shows an often unappreciated large variation in appendage morphology. Diplostracan branchiopods exhibit generally a division of labor into locomotory antennae and feeding/filtratory post-maxillary appendages (trunk limbs).
View Article and Find Full Text PDFMol Phylogenet Evol
March 2013
Universität Rostock, Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universitätsplatz 2, 18055 Rostock, Germany.
Cyclestheria hislopi is thought to be the only extant species of Cyclestherida. It is the sister taxon of all Cladocera and displays morphological characteristics intermediate of Spinicaudata and Cladocera. Using one mitochondrial (COI) and two nuclear (EF1α and 28S rRNA) markers, we tested the hypothesis that C.
View Article and Find Full Text PDFJ Morphol
July 2012
Universitaet Rostock, Institut für Biowissensschaften, Allgemeine und Spezielle Zoologie, Universitaetsplatz 2, D-18055 Rostock, Germany.
Cladocera are the ecologically most important group within the Branchiopoda. They are unquestionably branchiopods but their evolutionary origin remains unclear. One favored explanation of their origin is that they evolved from a reproductive larva of a clam shrimp-like ancestor.
View Article and Find Full Text PDFBraz J Biol
May 2011
Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, São Carlos, SP, Brazil, 13565-905.
The Conchostraca (clam shrimps) are a group of microcrustaceans found in freshwater habitats. They inhabit the benthos, yet many can swim actively and are often associated with macrophytes. They are filter-feeders, deriving their food from suspended particles or solids stirred up from the bottom.
View Article and Find Full Text PDFArthropod Struct Dev
December 2007
Humboldt Universität zu Berlin, Vergleichende Zoologie, Institut für Biologie, Philippstr. 13, 10115 Berlin, Germany.
The nauplius eye in Cyclestherida, Laevicaudata and Spinicaudata (previously collectively termed Conchostraca) consists of four cups of inverse sensory cells separated by a pigment layer and a tapetum layer. There are two lateral and two medial cups, a ventral medial cup and a posterior medial cup. The pigment and tapetum layers contain two different kinds of pigment granules, the inner pigment layer relatively large, dark (and electron dense) granules, and the outer tapetum layer light, reflective pigment granules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!