Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Objective assessment of voice pathology has a growing interest nowadays. Automatic speech/speaker recognition (ASR) systems are commonly deployed in voice pathology detection. The aim of this work was to develop a novel feature extraction method for ASR that incorporates distributions of voiced and unvoiced parts, and voice onset and offset characteristics in a time-frequency domain to detect voice pathology.
Materials And Methods: The speech samples of 70 dysphonic patients with six different types of voice disorders and 50 normal subjects were analyzed. The Arabic spoken digits (1-10) were taken as an input. The proposed feature extraction method was embedded into the ASR system with Gaussian mixture model (GMM) classifier to detect voice disorder.
Results: Accuracy of 97.48% was obtained in text independent (all digits' training) case, and over 99% accuracy was obtained in text dependent (separate digit's training) case. The proposed method outperformed the conventional Mel frequency cepstral coefficient (MFCC) features.
Conclusion: The results of this study revealed that incorporating voice onset and offset information leads to efficient automatic voice disordered detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvoice.2012.05.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!