A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multidirectional regression (MDR)-based features for automatic voice disorder detection. | LitMetric

Multidirectional regression (MDR)-based features for automatic voice disorder detection.

J Voice

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

Published: November 2012

Background And Objective: Objective assessment of voice pathology has a growing interest nowadays. Automatic speech/speaker recognition (ASR) systems are commonly deployed in voice pathology detection. The aim of this work was to develop a novel feature extraction method for ASR that incorporates distributions of voiced and unvoiced parts, and voice onset and offset characteristics in a time-frequency domain to detect voice pathology.

Materials And Methods: The speech samples of 70 dysphonic patients with six different types of voice disorders and 50 normal subjects were analyzed. The Arabic spoken digits (1-10) were taken as an input. The proposed feature extraction method was embedded into the ASR system with Gaussian mixture model (GMM) classifier to detect voice disorder.

Results: Accuracy of 97.48% was obtained in text independent (all digits' training) case, and over 99% accuracy was obtained in text dependent (separate digit's training) case. The proposed method outperformed the conventional Mel frequency cepstral coefficient (MFCC) features.

Conclusion: The results of this study revealed that incorporating voice onset and offset information leads to efficient automatic voice disordered detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvoice.2012.05.002DOI Listing

Publication Analysis

Top Keywords

voice
9
automatic voice
8
voice pathology
8
feature extraction
8
extraction method
8
voice onset
8
onset offset
8
detect voice
8
training case
8
multidirectional regression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!