Dopamine cell loss and increased iron in the substantia nigra (SN) characterize Parkinson's disease (PD), with cerebellar involvement increasingly recognized, particularly in motor compensation and levodopa-induced dyskinesia (LID) development. Because the red nucleus (RN) mediates cerebellar circuitry, we hypothesized that RN iron changes might reflect cerebellum-related compensation, and/or the intrinsic capacity for LID development. We acquired high resolution magnetic resonance images from 23 control and 38 PD subjects (12 with PD and history of LID [PD+DYS]) and 26 with PD and no history of LID (PD-DYS). Iron content was estimated from bilateral RN and SN transverse relaxation rates (R2*). PD subjects overall displayed higher R2* values in both the SN and RN. RN R2* values correlated with off-drug Unified Parkinson's Disease Rating Scale-motor scores, but not disease duration or drug dosage. RN R2* values were significantly higher in PD+DYS compared with control and PD-DYS subjects; control and PD-DYS subjects did not differ. The association of higher RN iron content with PD-related dyskinesia suggests increased iron content is involved in, or reflects, greater cerebellar compensatory capacity and thus increased likelihood of LID development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570638PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.025DOI Listing

Publication Analysis

Top Keywords

lid development
12
iron content
12
r2* values
12
higher iron
8
red nucleus
8
increased iron
8
parkinson's disease
8
history lid
8
control pd-dys
8
pd-dys subjects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!