The lack of small-molecule inhibitors for anion-selective transporters and channels has impeded our understanding of the complex mechanisms that underlie ion passage. The ubiquitous CLC "Chloride Channel" family represents a unique target for biophysical and biochemical studies because its distinctive protein fold supports both passive chloride channels and secondary-active chloride-proton transporters. Here, we describe the synthesis and characterization of a specific small-molecule inhibitor directed against a CLC antiporter (ClC-ec1). This compound, 4,4'-octanamidostilbene-2,2'-disulfonate (OADS), inhibits ClC-ec1 with low micromolar affinity and has no specific effect on a CLC channel (ClC-1). Inhibition of ClC-ec1 occurs by binding to two distinct intracellular sites. The location of these sites and the lipid dependence of inhibition suggest potential mechanisms of action. This compound will empower research to elucidate differences between antiporter and channel mechanisms and to develop treatments for CLC-mediated disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508466PMC
http://dx.doi.org/10.1016/j.chembiol.2012.09.017DOI Listing

Publication Analysis

Top Keywords

clc antiporter
8
designed inhibitor
4
clc
4
inhibitor clc
4
antiporter blocks
4
blocks function
4
function unique
4
unique binding
4
binding mode
4
mode lack
4

Similar Publications

Background: We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone).

View Article and Find Full Text PDF
Article Synopsis
  • - Single-molecule photobleaching analysis allows researchers to study how membrane proteins form oligomers by attaching a fluorophore to individual protein subunits, but accurate quantification requires careful consideration of labeling efficiency and background noise.
  • - A common method for labeling involved attaching a fluorophore to cysteine residues, although its effectiveness can vary based on the protein's structure and environment.
  • - The authors developed a systematic approach to evaluate potential cysteine labeling sites on two specific membrane proteins, ultimately finding that only about 30% of the originally chosen sites were effective for their analysis despite initial hypotheses.*
View Article and Find Full Text PDF

Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data.

View Article and Find Full Text PDF

Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.

View Article and Find Full Text PDF

TMEM9B Regulates Endosomal ClC-3 and ClC-4 Transporters.

Life (Basel)

August 2024

Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.

Article Synopsis
  • The study identifies TMEM9B, a newly discovered protein that interacts specifically with the endosomal Cl transporters ClC-3 and ClC-4, affecting their activity.
  • Co-expression experiments revealed that TMEM9B significantly reduces the functionality of ClC-3 and ClC-4 in certain cell models, but has minimal impact on other transporters.
  • This research highlights the potential importance of TMEM9B in regulating neuronal endosomal processes and understanding diseases related to these chloride channels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!