Various synthetic and natural biomaterials have been used for regeneration of tissues and hollow organs. However, clinical outcome of reconstructive procedures remained challenging due to the lack of appropriate scaffold materials, supporting the needs of various cell types and providing a barrier function required in hollow organs. To address these problems, we have developed a bilayered hybrid scaffold comprising unique traits of polymeric microfibers and naturally derived acellular matrices and tested its potential for hollow organ regeneration in a rat bladder model. Hybrid scaffolds were fabricated by electrospinning of PLGA microfibers directly onto the abluminal surface of a bladder acellular matrix. Stability of this bilayered construct was established using modified spinning technique. The resulting 3-dimensional framework provided good support for growth, attachment and proliferation of primary bladder smooth muscle cells. Histological analysis in vivo at 4 and 8 weeks post implantation, revealed regeneration of bladder tissue structures consisting of urothelium, smooth muscle and collagen rich layers infiltrated with host cells and micro vessels. Furthermore, hybrid scaffolds maintained normal bladder capacity, whereas BAM recipients showed a significant distension of the bladder. These results demonstrate that this adaptable hybrid scaffold supports bladder regeneration and holds potential for engineering of bladder and other hollow organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2012.10.075 | DOI Listing |
Int J Surg Case Rep
January 2025
Department of Orthopedic Surgery, Naha City Hospital, Okinawa, Japan.
Introduction: Although abdominal organ damage due to motor vehicle accident is often evident immediately after the injury and urgent operation is performed, it has been reported that minor injuries such as hollow viscus may become apparent during the course of treatment and require urgent surgery.
Case Report: The Authors present the case of a 42-year-old female who developed peritonitis immediately after undergoing surgery for thoracolumbar fracture-dislocation caused by a traffic accident. The patient exhibited no abdominal symptoms, such as nausea, vomiting, or abdominal wall rigidity, and had no difficulty with oral intake preoperatively.
J Artif Organs
January 2025
Department of Human Environmental Science, Shonan Institute of Technology, 1-1-25 Tsujido-Nishi-Kaigan, Fujisawa, Kanagawa, 251-8511, Japan.
Abel JJ, Rowntree LG and Turner BB (Baltimore Trio) proposed the concept of vividiffusion and developed a vividiffusion apparatus in 1912. In a 1914 paper, they laid out the most important rule of device design. We named this rule an ART law taken from the initials of the Baltimore Trio.
View Article and Find Full Text PDFProtoplasma
January 2025
Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
Copris are part of the Scarabaeidae family of Coleoptera. Copris are dung beetles or coprophagous beetles. These insects are called tunnelers because they excavate channels in the substrate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!