Background: The honeybee sting challenge is considered a reliable procedure to evaluate the efficacy of specific immunotherapy, but it is difficult and unpractical to perform in clinical practice, because live insects are required.

Objective: To assess the feasibility and reliability of a challenge test using a micro-syringe, and compared the procedure with sting challenge.

Methods: Patients on bee venom immunotherapy and without systemic reactions at field sting were enrolled. They underwent a sting challenge with live bee, and large local reactions were assessed up to 48 hours. Those patients displaying systemic reactions at the sting challenge were excluded from the syringe challenge for ethical reasons. The syringe challenge was done by injecting 0.5 μL fresh unfiltered bee venom at 2 mm depth (the length of the sting left by a bee). The same follow-up as at the first challenge was performed. Bee-specific immunoglobulin E (IgE) and tryptase were measured after each challenge.

Results: Nineteen patients underwent the sting challenge with live bees. Four had immediate systemic reactions (urticaria or asthma) and were excluded from the second challenge. The remaining 15 patients with large local reaction underwent the syringe challenge. No significant difference was seen in the maximum area of the large local reactions between the challenge with live bees and the syringe challenge. Also, no change was seen in tryptase and specific antibodies.

Conclusion: This preliminary study suggests that the micro-syringe challenge with honeybee venom is feasible and produces results indistinguishable from those of the traditional sting challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anai.2012.09.003DOI Listing

Publication Analysis

Top Keywords

sting challenge
24
syringe challenge
16
challenge
15
bee venom
12
systemic reactions
12
challenge live
12
large local
12
sting
9
challenge performed
8
underwent sting
8

Similar Publications

Activation of the cGAS-sting Pathway Mediated by Nanocomplexes for Tumor Therapy.

Curr Pharm Des

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.

cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway is an natural immune response signaling pathway in the human body that is essential for sensing abnormal DNA aggregation in the cell. When the cGAS protein senses abnormal or damaged DNA, it forms a second messenger called cyclic dinucleotide (cGAMP). The cycled dinucleotide will activate the downstream STING protein, thereby inducing the expression of inflammatory cytokines such as type I interferon, which binds to receptors on its own cell membrane and ultimately initiates multiple immune response pathways.

View Article and Find Full Text PDF

Self-Cascaded Pyroptosis-STING Initiators for Catalytic Metalloimmunotherapy.

J Am Chem Soc

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Gasdermin (GSDM)-mediated pyroptosis involves the induction of mitochondrial damage and the subsequent release of mitochondrial DNA (mtDNA), which is anticipated to activate the cGAS-STING pathway, thereby augmenting the antitumor immune response. However, challenges lie in effectively triggering pyroptosis in cancer cells and subsequently enhancing the cGAS-STING activation with specificity. Herein, we developed intelligent self-cascaded pyroptosis-STING initiators of cobalt fluoride (CoF) nanocatalysts for catalytic metalloimmunotherapy.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity.

Oncogene

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling.

View Article and Find Full Text PDF

An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation.

Adv Healthc Mater

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!