Colicins are proteins produced by some strains of Escherichia coli to kill competitors belonging to the same species. Among them, ColM (colicin M) is the only one that blocks the biosynthesis of peptidoglycan, a specific bacterial cell-wall polymer essential for cell integrity. ColM acts in the periplasm by hydrolysing the phosphoester bond of the peptidoglycan lipid intermediate (lipid II). ColM cytotoxicity is dependent on FkpA of the targeted cell, a chaperone with peptidylprolyl cis-trans isomerase activity. Dissection of ColM was used to delineate the catalytic domain and to identify the active-site residues. The in vitro activity of the isolated catalytic domain towards lipid II was 50-fold higher than that of the full-length bacteriocin. Moreover, this domain was bactericidal in the absence of FkpA under conditions that bypass the import mechanism (FhuA-TonB machinery). Thus ColM undergoes a maturation process driven by FkpA that is not required for the activity of the isolated catalytic domain. Genes encoding proteins with similarity to the catalytic domain of ColM were identified in pathogenic strains of Pseudomonas and other genera. ColM acts on several structures of lipid II representative of the diversity of peptidoglycan chemotypes. All together, these data open the way to the potential use of ColM-related bacteriocins as broad spectrum antibacterial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20120189DOI Listing

Publication Analysis

Top Keywords

catalytic domain
16
colm acts
8
activity isolated
8
isolated catalytic
8
colm
7
domain
5
colicin peptidoglycan
4
peptidoglycan lipid-ii-degrading
4
lipid-ii-degrading enzyme
4
enzyme potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!