A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EpicCapo: epitope prediction using combined information of amino acid pairwise contact potentials and HLA-peptide contact site information. | LitMetric

Background: Epitope identification is an essential step toward synthetic vaccine development since epitopes play an important role in activating immune response. Classical experimental approaches are laborious and time-consuming, and therefore computational methods for generating epitope candidates have been actively studied. Most of these methods, however, are based on sophisticated nonlinear techniques for achieving higher predictive performance. The use of these techniques tend to diminish their interpretability with respect to binding potential: that is, they do not provide much insight into binding mechanisms.

Results: We have developed a novel epitope prediction method named EpicCapo and its variants, EpicCapo(+) and EpicCapo(+REF). Nonapeptides were encoded numerically using a novel peptide-encoding scheme for machine learning algorithms by utilizing 40 amino acid pairwise contact potentials (referred to as AAPPs throughout this paper). The predictive performances of EpicCapo(+) and EpicCapo(+REF) outperformed other state-of-the-art methods without losing interpretability. Interestingly, the most informative AAPPs estimated by our study were those developed by Micheletti and Simons while previous studies utilized two AAPPs developed by Miyazawa & Jernigan and Betancourt & Thirumalai. In addition, we found that all amino acid positions in nonapeptides could effect on performances of the predictive models including non-anchor positions. Finally, EpicCapo(+REF) was applied to identify candidates of promiscuous epitopes. As a result, 67.1% of the predicted nonapeptides epitopes were consistent with preceding studies based on immunological experiments.

Conclusions: Our method achieved high performance in testing with benchmark datasets. In addition, our study identified a number of candidates of promiscuous CTL epitopes consistent with previously reported immunological experiments. We speculate that our techniques may be useful in the development of new vaccines. The R implementation of EpicCapo(+REF) is available at http://pirun.ku.ac.th/~fsciiok/EpicCapoREF.zip. Datasets are available at http://pirun.ku.ac.th/~fsciiok/Datasets.zip.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548761PMC
http://dx.doi.org/10.1186/1471-2105-13-313DOI Listing

Publication Analysis

Top Keywords

amino acid
12
epitope prediction
8
acid pairwise
8
pairwise contact
8
contact potentials
8
epiccapo+ epiccapo+ref
8
candidates promiscuous
8
epitopes consistent
8
epiccapo epitope
4
prediction combined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!