Random walk of motor planning in task-irrelevant dimensions.

J Neurophysiol

MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU Univ. Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.

Published: February 2013

The movements that we make are variable. It is well established that at least a part of this variability is caused by noise in central motor planning. Here, we studied how the random effects of planning noise translate into changes in motor planning. Are the random effects independently added to a constant mean end point, or do they accumulate over movements? To distinguish between these possibilities, we examined repeated, discrete movements in various tasks in which the motor output could be decomposed into a task-relevant and a task-irrelevant component. We found in all tasks that the task-irrelevant component had a positive lag 1 autocorrelation, suggesting that the random effects of planning noise accumulate over movements. In contrast, the task-relevant component always had a lag 1 autocorrelation close to zero, which can be explained by effective trial-by-trial correction of motor planning on the basis of observed motor errors. Accumulation of the effects of planning noise is consistent with current insights into the stochastic nature of synaptic plasticity. It leads to motor exploration, which may subserve motor learning and performance optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00706.2012DOI Listing

Publication Analysis

Top Keywords

motor planning
16
random effects
12
effects planning
12
planning noise
12
motor
8
task-irrelevant component
8
lag autocorrelation
8
planning
7
random
4
random walk
4

Similar Publications

Recent studies have demonstrated hysteresis in studies of syntactic choice in language production (e.g., Koranda et al.

View Article and Find Full Text PDF

Motor skills in early and middle childhood are essential for physical play, social interactions, and academic development. Children with autism spectrum disorder (ASD) often exhibit atypical sensory responses, which can impact self-care and other developmental areas. This study explores the impact of sensory and motor rehabilitation using a Motor Sensory Room to stimulate motor development in children with ASD.

View Article and Find Full Text PDF

Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy.

View Article and Find Full Text PDF

Introduction: , a protein kinase located on human chromosome 21, plays a role in postembryonic neuronal development and degeneration. Alterations to have been consistently associated with cognitive functioning and neurodevelopmental disorders (e.g.

View Article and Find Full Text PDF

Preoperative mapping techniques for brain tumor surgery: a systematic review.

Front Oncol

January 2025

Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Accurate preoperative mapping is crucial for maximizing tumor removal while minimizing damage to critical brain functions during brain tumor surgery. Navigated transcranial magnetic stimulation (nTMS), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) are established methods for assessing motor and language function. Following PRISMA guidelines, this systematic review analyzes the reliability, clinical utility, and accessibility of these techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!