Ion distributions play a central role in various settings-from biology, where they mediate the electrostatic interactions between charged biomolecules in solution, to energy storage devices, where they influence the charging properties of supercapacitors. These distributions are determined by interactions dictated by the chemical properties of the ions and their environment as well as the long-range nature of the electrostatic force. Recent theoretical and computational studies have explored the role of correlations between ions, which have been suggested to underlie a number of counterintuitive results, such as like-charge attraction. However, the interdependency between ion correlations and other interactions that ions experience in solution complicates the connection between physical models of ion correlations and the experimental investigation of ion distributions. We exploit the properties of the liquid/liquid interface to vary the coupling strength of ion-ion correlations from weak to strong while monitoring their influence on ion distributions at the nanometer scale with X-ray reflectivity and the macroscopic scale with interfacial tension measurements. These data are in agreement with the predictions of a parameter-free density functional theory that includes ion-ion correlations and ion-solvent interactions over the entire range of experimentally tunable correlation coupling strengths (from 0.8 to 3.7). This study provides evidence for a sharply defined electrical double layer for large coupling strengths in contrast to the diffuse distributions predicted by mean field theory, thereby confirming a common prediction of many ion correlation models. The reported findings represent a significant advance in elucidating the nature and role of ion correlations in charged soft matter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528511PMC
http://dx.doi.org/10.1073/pnas.1214204109DOI Listing

Publication Analysis

Top Keywords

ion correlations
16
ion distributions
12
ion-ion correlations
8
coupling strengths
8
correlations
7
ion
7
distributions
5
tuning ion
4
correlations electrified
4
electrified soft
4

Similar Publications

Fluorescent lifetimes of dissolved organic matter (DOM) and associated physicochemical parameters were measured over 14 months in an estuary in Southern California, USA. Measurements were made on 77 samples from sites near the inlet, mid-estuary, and outlet to maximize the range of physicochemical variables. Time-resolved fluorescence data were well fit to a triexponential model with an intermediate lifetime component (τ: 1 to 5 ns), a long lifetime component (τ: 2 to 15 ns), and a short lifetime component (τ: < 1 ns).

View Article and Find Full Text PDF

Solvation layer effects on lithium migration in localized High-Concentration Electrolytes: Analyzing the diverse antisolvent Contributions.

J Colloid Interface Sci

December 2024

Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.

View Article and Find Full Text PDF

Background: Epidemiological associations between kidney stone disease (KSD) and gastrointestinal disorders have been reported, and intestinal homeostasis plays a critical role in stone formation. However, the underlying intrinsic link is not adequately understood. This study aims to investigate the genetic associations between these two types of diseases.

View Article and Find Full Text PDF

Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive.

View Article and Find Full Text PDF

A Ce(III) phosphinate and a Ce(IV) phosphostibonate have been assembled by the reaction of a phosphinic acid and phosphostibonate with Ce(III) salts. Single crystal X-ray diffraction (SCXRD) studies reveal the formation of a rare triangular Ce(III) oxo-cluster [Ce(PhCHPO)]Cl(CHOH)(HO)] () and a fascinating hexanuclear oxo-cluster containing Ce(IV) ions [Ce (-ClCHSb)(μ-O)(μ-O)(-BuPO)(μ-OCH)] (). The molecular architecture of showcased an interesting correlation with platonic solids, wherein the Ce(IV), Sb(V), and P(V) ions were found to be present in vertices of an octahedron, a tetrahedron, and a cube, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!