Ambush predation is characterized by an animal scanning the environment from a concealed position and then rapidly executing a surprise attack. Mantis shrimp (Stomatopoda) consist of both ambush predators ('spearers') and foragers ('smashers'). Spearers hide in sandy burrows and capture evasive prey, whereas smashers search for prey away from their burrows and typically hammer hard-shelled, sedentary prey. Here, we examined the kinematics, morphology and field behavior of spearing mantis shrimp and compared them with previously studied smashers. Using two species with dramatically different adult sizes, we found that strikes produced by the diminutive species, Alachosquilla vicina, were faster (mean peak speed 5.72±0.91 m s(-1); mean duration 3.26±0.41 ms) than the strikes produced by the large species, Lysiosquillina maculata (mean peak speed 2.30±0.85 m s(-1); mean duration 24.98±9.68 ms). Micro-computed tomography and dissections showed that both species have the spring and latch structures that are used in other species for producing a spring-loaded strike; however, kinematic analyses indicated that only A. vicina consistently engages the elastic mechanism. In the field, L. maculata ambushed evasive prey primarily at night while hidden in burrows, striking with both long and short durations compared with laboratory videos. We expected ambush predators to strike with very high speeds, yet instead we found that these spearing mantis shrimp struck more slowly and with longer durations than smashers. Nonetheless, the strikes of spearers occurred at similar speeds and durations to those of other aquatic predators of evasive prey. Although counterintuitive, these findings suggest that ambush predators do not actually need to produce extremely high speeds, and that the very fastest predators are using speed to achieve other mechanical feats, such as producing large impact forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.075317 | DOI Listing |
The mantis shrimp is recognized to have one of the most powerful vision systems in nature, with up to 16 color-perceiving channels and the perception of linear and circular polarization detection. Inspired by its biostructure, we developed a snapshot polarization-hyperspectral camera (pHScam) to detect linear polarization in four directions and spectral signature in 21 bands of incident light, resulting in a 4D polar-spectral hypercube, represented as (,,,→). We introduced two bio-mimetic encoding mechanisms, viz.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
Stomatopods, commonly known as mantis shrimps, possess an intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. While 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopods' colour vision.
View Article and Find Full Text PDFWe revised the previous records of Clorida japonica Manning, 1978 and conducted extensive field and museum material surveys in Japan. The material examined included five species of the genus Clorida Eydoux & Souleyet, 1842 as follows: C. japonica; C.
View Article and Find Full Text PDFJ Food Sci
December 2024
International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Trypsin from the digestive tract of harpiosquillid mantis shrimp (HMS) was purified using ammonium sulfate precipitation and a soybean trypsin inhibitor-CNBr-activated Sepharose 4B affinity column. The purified trypsin (PTRP-HMS) had a purity of 30.4-fold, and a yield of 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!