Role of cytoskeletal motor proteins in viral infection.

Postepy Hig Med Dosw (Online)

Zakład Wirusologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie-SGGW, ul. Ciszewskiego 8, 02-786 Warszawa, Poland.

Published: October 2012

Cytoskeleton, composed of actin filaments, microtubules and intermediate filaments, regulates many processes in the cell, e.g. intracellular transport. Actin and microtubules are polarized structures, along which bidirectional transport of motor proteins occurs: myosins along actin and the dynein/dynactin complex and kinesins along microtubules. Viruses interact with the cytoskeleton and motor proteins at different stages during their replication cycle. When entering and egressing the cell, viruses must penetrate the cortical layer of microfilaments, which usually takes place with the contribution of myosin. In the cytoplasm, retrograde transport involving dynein is used to move viruses to the microtubule organizing center. After replication, kinesins participate in anterograde transport of newly produced virions to the peripheral region, close to the plasma membrane. Some families of viruses have developed alternate routes of intracellular transport. The aim of this study is to describe the interactions between virus and cytoskeletal motor proteins and to determine their role in viral infection according to the current literature data.  

Download full-text PDF

Source
http://dx.doi.org/10.5604/17322693.1016360DOI Listing

Publication Analysis

Top Keywords

motor proteins
16
cytoskeletal motor
8
viral infection
8
intracellular transport
8
transport
5
role cytoskeletal
4
motor
4
proteins
4
proteins viral
4
infection cytoskeleton
4

Similar Publications

Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.

View Article and Find Full Text PDF

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

Mouse models for understanding physiological functions of ADARs.

Methods Enzymol

January 2025

St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia. Electronic address:

Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!