Purpose: The specific aims of the AIEOP-TW-2003 protocol included prospectively investigating a possible association of tumor loss of heterozygosity with outcomes in children treated for Wilms tumor.
Materials And Methods: We analyzed 125 unilateral favorable histology Wilms tumors registered between 2003 and 2008 in the Italian cooperative protocol for microsatellite markers mapped to chromosomes 1p, 7p, 11q, 16q and 22q.
Results: The 3-year disease-free survival and overall survival probabilities were 0.87 (95% CI 0.81-0.93) and 0.98 (95% CI 0.96-1.0), respectively. Loss of heterozygosity at 1p was significantly associated with a worse disease-free survival (probability 0.67 for patients with and 0.92 for those without 1p loss of heterozygosity, p = 0.0009), as confirmed also by multivariate analysis adjusting for tumor stage and patient age at diagnosis. There was no difference in disease-free survival probability among children with loss of heterozygosity in the other chromosomal regions tested. The worse outlook for children older than 2 years at diagnosis did not seem to be influenced by the loss of heterozygosity patterns considered.
Conclusions: Chromosome 1p loss of heterozygosity seems to be a risk factor for nonanaplastic Wilms tumor, possibly regardless of other clinical factors. Our findings were uninformative regarding loss of heterozygosity in the other chromosomal regions tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.juro.2012.09.009 | DOI Listing |
Unlabelled: Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human yet their impact on brain development has not been investigated. Here, we developed mouse models with different DNA-binding missense mutations.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
We identified a rare heterozygous germline loss-of-function variant in the tumor necrosis factor receptor-associated factor 2 (TRAF2) in a young adult patient diagnosed with medulloblastoma. This variant is located within the TRAF-C domain of the E3 ubiquitin ligase protein and is predicted to diminish the binding affinity of TRAF2 to upstream receptors and associated adaptor proteins. Integrative genomics revealed a biallelic loss of TRAF2 via partial copy-neutral loss-of-heterozygosity of 9q in the medulloblastoma genome.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
The mesenchymal transformations of infiltrating gliomas are uncommon events. This is particularly true of IDH-mutant astrocytomas and oligodendrogliomas, in which mesenchymal transformation is exceedingly rare. oligosarcoma is a newly recognized methylation class (MC) that represents transformed 1p/19q co-deleted oligodendrogliomas, but recent studies indicate it may be non-specific.
View Article and Find Full Text PDFNPJ Precis Oncol
December 2024
Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here, we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!